How to Make Simpsons Rule UDF
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
function output = Simpsons(f,a,b,h)
% f - funtion
% a - This is the initial x value
% b - This is the final x value
% h - This is the step-size
x=[a:h:b]; %need to create a vector of n+1 evenly spaced points
sr=(h/3)*(f(x(1))+2*sum(f(x(3:2:end-2)))+4*sum(f(x(2:2:end)))+f(x(end)))
output=sr
end
I made this simpsons rule UDF and it works can someone just explain wihat the last line reads? I don't fully understand it. Also please let me know if this is a valid UDF for Simpsons if you do not see any errors.
0 Kommentare
Antworten (1)
Mohith Kulkarni
am 7 Okt. 2020
It is a valid simpsons rule implementation. Let me break the line down.
sr=(h/3)*(f(x(1))+2*sum(f(x(3:2:end-2)))+4*sum(f(x(2:2:end)))+f(x(end)))
This expression above is equivalent to (Δx/3)*[f(x0)+4f(x1)+2f(x2)+4f(x3)+2f(x4)+⋯+4f(xn−1)+f(xn)].
x(3:2:end-2) %j:i:k creates a regularly-spaced vector using i as the increment between elements.
So here indexing into the elements of x at odd places. We left out the end as f(xn) is multiplied with 1 and not 2. Similarly, access elements of x at even positions using
x(2:2:end)
Since we are passing a vector to f, the ouput is a vector and sum is used to find the sum of the output vector.
sum(f(x(3:2:end-2)))
0 Kommentare
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!