Dsolve giving implicit solution

11 Ansichten (letzte 30 Tage)
Shahsank pandey
Shahsank pandey am 1 Okt. 2020
Kommentiert: Walter Roberson am 2 Okt. 2020
Hello,
I am new to Matlab and am trying to solve a heat transfer problem between two heated bodies. I wrote the commands as below, where A,B,C,D and E are all constant values which are already defined and caluclated. On attempting to solve the diff eqn though I am getting this kind of message. Is there something I am doing wrong or should use a different solver or is there a way to make sense out of the solution. My aim would be to get a plot of T vs t. The Diff eqn itself is not implicit so not sure why the solution is coming out implicit.
>> syms A B C D E T(t);
>> ode = diff(T,t) == B + C - A*(T^4) - D*T;
>> cond = T(0) == 673;
>> Tsol(t) = dsolve(ode,cond)
Warning: Unable to find explicit solution. Returning implicit solution instead.
> In dsolve (line 208)
Tsol(t) =
solve(t + symsum(root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)*(log(T - 4*B*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) - 4*C*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) + 3*D*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)*T) + 3*log(A) + log(root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)) + log(12*D*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) + 4) + pi*1i), k, 1, 4) - symsum(root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)*(log(2019*D*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) - 4*C*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) - 4*B*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) + 673) + 3*log(A) + log(root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k)) + log(12*D*root(8*D*b + 18*D^2*b^2 - 27*D^4*b^4 - 256*A*B^3*b^4 - 256*A*C^3*b^4 - 768*A*B*C^2*b^4 - 768*A*B^2*C*b^4 + 1, b, k) + 4) + pi*1i), k, 1, 4) == 0, T)
  2 Kommentare
Walter Roberson
Walter Roberson am 2 Okt. 2020
Which release are you using? R2020a is returning empty for me.
Walter Roberson
Walter Roberson am 2 Okt. 2020
I do not recall ever having seen solve() introduce a variable named b . Especially not within root() -- the variable that it takes the root() of is almost always z, except in cases where z already occurs inside the expression, in which case root() uses numbered z variables such as z1 .... At least in my experience.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Alan Stevens
Alan Stevens am 1 Okt. 2020
Bearbeitet: Alan Stevens am 1 Okt. 2020
Look at documentation on ode45. You don't need a symbolic solution if you just want to get T as a function of t.
Like the following, for example:
tspan = [0 1]; % replace the 1 with your desired end time
T0 = 673;
[t, T] = ode45(@dTdtfn, tspan, T0);
plot(t,T),grid
xlabel('time'),ylabel('Temperature')
function dTdt = dTdtfn(~,T)
% Define A B C and D
A = 10^-6; B = 1; C = 1; D = 10^-2; % Replace with your values
dTdt = B + C - A*(T^4) - D*T;
end
  1 Kommentar
Shahsank pandey
Shahsank pandey am 2 Okt. 2020
Voila! that works. Thank you for the help and direction

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by