How to perform logical AND on intervals of contiguous locations

2 Ansichten (letzte 30 Tage)
I have the following problem. Let's say I have the arrays
x = logical([0, 1, 0,0, 1,1, 0,0,0, 1,1,1, 0])
y = logical([0, 1, 1,0, 1,1, 0,1,0, 1,0,1, 0])
Array X has three intervals of 1's with indices 2:2, 5:6, and 10:12. I want to apply an "interval AND" operation to X, based on Y, in the following sense: for each interval of ones in X, if any element in Y is zero in that interval, the whole interval is zeroed, i.e., Z = intervalAND(X,Y) should be the same as
z = logical([0, 1, 0,0, 1,1, 0,0,0, 0,0,0, 0])
Let me explain. Since all(Y(2:2)) = 1, it produces ones in Z(2:2). The same happens in the second interval (5:6): Both Y(5) and Y(6) are true, producing ones in Z. However, there is a zero in Y(10:12) which zeroes the whole interval Z(10:12).
I know how to do it with a for loop:
d = diff(x);
pos = find(d == 1);
neg = find(d == -1);
z = x;
for k = 1:length(neg)
interval = pos(k)+1 : neg(k);
if ~all(y(interval))
z(interval) = false;
end
end
However, I need to vectorize it to make it run faster (I am working with huge arrays). Does someone know how to compute Z without using a for/while loop?
  4 Kommentare
James Tursa
James Tursa am 24 Sep. 2020
Is the algorithm running on each column individually, or running across the entire matrix as a whole? I.e., does the 1's logic extend across columns?
Arturo Camacho Lozano
Arturo Camacho Lozano am 24 Sep. 2020
Each column is independant. The same column vector Y is applied to all columns, though.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Bruno Luong
Bruno Luong am 24 Sep. 2020
Bearbeitet: Bruno Luong am 25 Sep. 2020
x = logical([0, 1, 0,0, 1,1, 0,0,0, 1,1,1, 0])
y = logical([0, 1, 1,0, 1,1, 0,1,0, 1,0,1, 0])
code without loop or groupping, on my bench test about 3 time faster than Stephen's accumarray solution
i = find(diff([0 x 0]));
n = histc(find(~y), i);
j = [1;-1]*(n(1:2:end)==0);
if x(end)
i(end)=[];
j(end)=[];
end
z = logical(cumsum(accumarray(i(:),j(:),[length(x),1])));
  10 Kommentare
Bruno Luong
Bruno Luong am 26 Sep. 2020
Bearbeitet: Bruno Luong am 26 Sep. 2020
Faster. It does not create unecessary elements to accumulate then removed.
The one before is still OK if you prefer readable code.
Arturo Camacho Lozano
Arturo Camacho Lozano am 30 Sep. 2020
Thanks four answer. This implementation works way faster than other proposed implementations that use "splitapply". Besides, it was easy to port to the target language (Python).

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (2)

Mohammad Sami
Mohammad Sami am 24 Sep. 2020
You can group based on the values of x.
gid = cumsum(x ~= circshift(x,1));
if(gid(1) == 0)
gid = gid + 1;
end
a = splitapply(@min,y,gid);
z = a(gid);
  1 Kommentar
Arturo Camacho Lozano
Arturo Camacho Lozano am 25 Sep. 2020
Bearbeitet: Arturo Camacho Lozano am 25 Sep. 2020
Great! It needs a small adjusment, though. The second argument to splitapply should be x&y:
a = splitapply(@min, x&y, gid);
Let me clarify. If we change the fourth element of Y to 1, i.e.
x = logical([0, 1, 0,0, 1,1, 0,0,0, 1,1,1, 0])
y = logical([0, 1, 1,1, 1,1, 0,1,0, 1,0,1, 0])
the output should be the same as before:
z = logical([0, 1, 0,0, 1,1, 0,0,0, 0,0,0, 0])
because there was already a 0 in that position of X.
(Please edit the answer to accept it).

Melden Sie sich an, um zu kommentieren.


Matt J
Matt J am 25 Sep. 2020
Using group1s from
>> xg=group1s(x)+1;
>> yg=splitapply(@all,y,xg);
>> z=yg(xg)
z =
1×13 logical array
0 1 0 0 1 1 0 0 0 0 0 0 0

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by