Numerical integration of symbolic equation
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to numerical integrate the function with respect to x. I am not able to solve it. Can anyone help me?
fun = @(x) (1./(exp(0.014342./(x*t))-1).*1./x.^4);
q = integral(@(x) fun(x), 0, x1)
Note: t is a unknown constant over here and limits are from 0 to x1.
0 Kommentare
Antworten (1)
Walter Roberson
am 21 Sep. 2020
This is impossible to do as a numeric integration.
2 Kommentare
Walter Roberson
am 21 Sep. 2020
The equation being integrated is fundamentally discontinuous at t=0 and at x=0
Walter Roberson
am 23 Sep. 2020
If you write the function as
syms x x0 t A real
assume(x0>=0 & t>0 & A>0 & x>=0)
fun = @(x) (1./(exp(A/(x*t))-1)./x.^4);
Q = int(fun(x), x, 0, x0)
Then MATLAB still cannot handle it... but pop it over into Maple and Maple can handle that, returning
%Maple notation. Beware the ln and Pi and I:
1/3*(6*t^3*polylog(3,exp(A/x0/t))*x0^3-A*t^2*x0^2*Pi^2+6*A*t^2*x0^2*dilog(exp(A/x0/t))+3*A^2*t*x0*ln(-1+exp(A/x0/t))+3*I*A^2*t*x0*Pi+A^3)/A^3/x0^3
In MATLAB notation, for A = 0.014342
@(t,x0)1.0./x0.^3.*(x0.^2.*(t.^2.*dilog(exp(1.4342e-2./(t.*x0))).*9.72323000800358e+3-t.^2.*1.599407227996604e+4)+x0.*(t.*2.190484349177098e+2i+t.*log(exp(1.4342e-2./(t.*x0))-1.0).*6.972528238739367e+1)+3.333333333333333e-1)+t.^3.*polylog(3,exp(1.4342e-2./(t.*x0))).*6.779549580256296e+5
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!