Plotting with lsqnonlin regression
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
I wrote a function that uses lsqnonlin to generate predictions but I'm wondering how I can use those predictions to make plots and visulaize them? Should I be using lsqcurvefit instead? Any and all suggestions are welcome! The function lsq calls errFun and I've included them below for reference. Thank you in advance for your help!
function results = lsq(M) % takes Nx3 matrix where columns are Lx, Ly, gap
results = table();
tempTable = table();
idx = nchoosek(1:size(M,1), 3); % Nx3 matrix of all index trios
a = [];
Lx = [];
Ly = [];
gap = [];
for k = 1:size(idx, 1)
ix = idx(k ,:); % current idx trio, row vector
Lx = M(ix,1)';
Ly = M(ix,2)';
gap = M(ix,3);
L = sqrt((M(ix,1).^2 + M(ix,2).^2)/2);
% Here is where I'm having trouble. I passed the four arguments and the
% errors says "Too many input argumetns".
lsq = lsqnonlin(@(coeff) errFun(coeff, L, M(ix,3)), [0; 1; 1]);
a(k) = lsq(1);
tempTable.Lx = Lx(:)';
tempTable.Ly = Ly( :)';
tempTable.L = L(:)';
tempTable.Prediction = a(k)';
results = [results;tempTable];
end
results.PercentErr = abs((results.Prediction - 4.5670) ./ 4.5670) * 100;
end
function fErr = errFun(coeff, xdata, ydata)
%parameters
a = coeff(1);
b = coeff(2);
c = coeff(3);
% calculate prediction from model
yModel = a + b*exp(-c .* xdata);
fErr = yModel - ydata;
end
0 Kommentare
Antworten (1)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!