parfor problem (broadcast variable)
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi, I'm trying to use "parfor" in my MATLAB script.
It goes well without error, but It shows no significant speed boost compared to for loop.
And I got this warning message:
"the entire array ('A_Data' , 'A_ref') is a broadcast variable. This might result in unnecessary communication overhead."
How can I deal with this problem?
Note that:
A_Data: 1710203x5 double
A_ref: 5760x5 double
Please suggest the solutions.
% load 'A_Data' and 'A_ref' matrix
load dataq.mat
% preallocation ('theta' ,'b_ref')
k=length(A_ref);
theta=zeros(k,5);
b_ref=zeros(k,1);
% regression
poolobj = parpool(8);
parfor i=1:k
W = sqrt( ...
exp( ...
-( ...
( ( A_Data(:,2)-A_ref(i,2) ) / 0.6 ).^2+ ...
( ( A_Data(:,3)-A_ref(i,3) ) / 0.6 ).^2+ ...
( ( A_Data(:,4)-A_ref(i,4) ) / 0.6 ).^2+ ...
( ( A_Data(:,5)-A_ref(i,5) ) / 0.6 ).^2 ...
) /2 ...
) ...
);
theta(i,:)=regress(W.*b_Data,repmat(W,1,5).*A_Data);
b_ref(i,1)=A_ref(i,:)*theta(i,:)';
end
delete(poolobj);
0 Kommentare
Antworten (1)
Matt J
am 18 Sep. 2020
Bearbeitet: Matt J
am 18 Sep. 2020
There's never any gaurantee parfor will be faster, but I would modify the code as follows,
B_Data=A_Data(:,2:5)/(0.6*2);
B_ref=A_ref(:,2:5)/(0.6*2);
parfor i=1:k
W = exp(sum( -( B_Data-B_ref(i,:) ) ).^2 ,2) ;
theta(i,:)=regress(W.*b_Data,W.*A_Data);
end
b_ref=A_ref*theta.';
0 Kommentare
Siehe auch
Kategorien
Mehr zu Parallel Computing Fundamentals finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!