continuous search of the closest rows in a matrix
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
Consider a 100x10 matrix and a random row of it, let be "row1".
I want to calculate the Euclidean distance between "row1" and the rest of the rows and I want to find the closest row to "row1", let be "row2".
Then I want to find the closest row to "row2", let be "row3" (the "row1" has been excluded from the matrix) and so on.
I use the "pdist2" for the Euclidean distance.
How you please help me?
Thank you.
Best,
Pavlos
4 Kommentare
Akzeptierte Antwort
Matt J
am 15 Jan. 2013
Bearbeitet: Matt J
am 15 Jan. 2013
Here's what I use. There are others like it on the FEX, some of them fancier.
function Graph=interdists(A,B)
%Finds the graph of distances between point coordinates
%
% (1) Graph=interdists(A,B)
%
% in:
%
% A: matrix whose columns are coordinates of points, for example
% [[x1;y1;z1], [x2;y2;z2] ,..., [xM;yM;zM]]
% but the columns may be points in a space of any dimension, not just 3D.
%
% B: A second matrix whose columns are coordinates of points in the same
% Euclidean space. Default B=A.
%
%
% out:
%
% Graph: The MxN matrix of separation distances in l2 norm between the coordinates.
% Namely, Graph(i,j) will be the distance between A(:,i) and B(:,j).
%
%
% (2) interdists(A,'noself') is the same as interdists(A), except the output
% diagonals will be NaN instead of zero. Hence, for example, operations
% like min(interdists(A,'noself')) will ignore self-distances.
%
% See also getgraph
noself=false;
if nargin<2
B=A;
elseif ischar(B)&&strcmpi(B,'noself')
noself=true;
B=A;
end
N=size(A,1);
B=reshape(B,N,1,[]);
Graph=l2norm(bsxfun(@minus, A, B),1);
Graph=squeeze(Graph);
if noself
n=length(Graph);
Graph(linspace(1,n^2,n))=nan;
7 Kommentare
Weitere Antworten (1)
Teja Muppirala
am 16 Jan. 2013
If you have the Statistics Toolbox installed, instead of using PDIST2, use PDIST (along with SQUAREFORM) instead. It is designed to find all interpoint distances for a single matrix very efficiently. Then your entire problem could be reduced to this:
M = randn(100,10);
L = size(R,1);
D = squareform(pdist(M));
D(1:L+1:L^2) = nan;
startrow = 1; % Starting Row
row = [startrow; zeros(L-1,1)];
for n = 2:L
oldrow = startrow;
[val,startrow] = min(D(:,startrow));
D(oldrow,:) = nan;
row(n) = startrow;
end
row
0 Kommentare
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!