Neural network training - 2 input parameter to 1 output result training
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ridza Effendi Abd Razak
am 3 Sep. 2020
Kommentiert: Ridza Effendi Abd Razak
am 29 Sep. 2020
im stuck at training net with 2 parameter.
right now im trying to clasify test data. by using example "Classify Text Data Using Deep Learning".
for that example if i want to have "description" and "category" as training input and "resolution" as target output.
which part of code in the example that i have to change.
i need help
0 Kommentare
Akzeptierte Antwort
Madhav Thakker
am 8 Sep. 2020
Bearbeitet: Madhav Thakker
am 8 Sep. 2020
Hi Ridza,
I understand that you want to train the LSTM network using description and category values instead of just description. As the preprocessText function, tokenization of input data is taking place. One simple way of training the network on both these values is to just prepend category data and continue with the procedure in the same way.
Note that you will have to change the target length of your training data by visualizing the histogram of the document length.
sequenceLength = %new Sequence Length;
XTrain = doc2sequence(enc,documentsTrain,'Length',sequenceLength);
Attaching code snippet for better explanation.
documentsTrain = preprocessText(dataTrain.Description + " " + dataTrain.Category);
documentsValidation = preprocessText(dataValidation.Description + " " + dataValidation.Category);
YTrain = categorical(dataTrain.Resolution);
YValidation = categorical(dataValidation.Resolution);
Refer this example for details -
Hope this helps.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!