Plotting a 3D arrow using vectarrow
76 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Carolin Bock
am 27 Aug. 2020
Bearbeitet: Matt J
am 27 Aug. 2020
Hello,
I'm trying to plat a 3D arrow using the vectarrow function. I don't get any arrow messages but there is just now arrow in my plot. It would be great to get some tipps:)
My code is the following:
%50 J
[X1,Y1] = meshgrid(1:0.025:1.7,0.05:0.05:0.25);
p00_1 = 1.289;
p10_1 = -0.3693;
p01_1 = 0.7187;
p20_1 = 0.1467;
p11_1 = -1.188;
p02_1 = 1.188;
colormap(flipud(jet));
Z1 = p00_1 + p10_1.*X1 + p01_1.*Y1 + p20_1.*X1.^2 + p11_1.*X1.*Y1 + p02_1.*Y1.^2
s1 = surf(X1,Y1,Z1,'FaceColor','interp','EdgeColor', 'none')
colorbar;
hold on;
%Patch
Z2 = 0.9 + 0*X1 + 0*Y1
s2 = surf(X1,Y1,Z2,'FaceColor','none','FaceAlpha',1.0,'EdgeColor','none')
v = [1.7 0.05 0.9; 1.7 0.1689 0.9; 1 0.05 0.9; 1.3909 0.25 0.9 ; 1 0.25 0.9; 1 0.05 0.9];
f = [1 2 3 4 5 6];
p = patch('Faces',f,'Vertices',v,'FaceColor',[17 17 17]/30,'FaceAlpha',1.0,'EdgeColor','k','LineWidth',0.5);
zdiff = Z1 - Z2;
C = contours(X1, Y1, zdiff, [0 0]);
% Extract the x- and y-locations from the contour matrix C.
xL = C(1, 2:end);
yL = C(2, 2:end);
% Interpolate on the first surface to find z-locations for the intersection line.
zL = interp2(X1, Y1, Z1, xL, yL);
% Visualize the line.
line(xL, yL, zL, 'Color', 'k', 'LineWidth', 1.0);
% Label axes
xlabel( 'f_{u}/f_{y}');
ylabel([char(949) '_{u}']);
zlabel( 'F_{max}/F_{soll}');
xlim([1 1.7])
ylim([0.05 0.25])
zlim([0.0 1.1])
grid on
title('S355 LP=0 KV=100J')
v = [0.9 0.9]
%contour(X1,Y1,Z1,v)
M1 = contour(X1,Y1,Z1,v,'red','LineWidth',2.0)
%Achsenrichtung
view(axes1,[124.8 23.8]);
grid(axes1,'on');
hold(axes1,'off');
set(gca,'xticklabel',num2str(get(gca,'xtick')','%.2f'))
set(gca,'yticklabel',num2str(get(gca,'ytick')','%.2f'))
set(gca,'zticklabel',num2str(get(gca,'ztick')','%.2f')
function vectarrow(p0,p1)
%Arrowline 3-D vector plot.
% vectarrow(p0,p1) plots a line vector with arrow pointing from point p0
% to point p1. The function can plot both 2D and 3D vector with arrow
% depending on the dimension of the input
%
% Example:
% 3D vector
p0 = [1.7 0.16 0.9]; % Coordinate of the first point p0
p1 = [1.7 0.16 0.0]; % Coordinate of the second point p1
vectarrow(p0,p1)
if max(size(p0))==3
if max(size(p1))==3
x0 = p0(1);
y0 = p0(2);
z0 = p0(3);
x1 = p1(1);
y1 = p1(2);
z1 = p1(3);
plot3([x0;x1],[y0;y1],[z0;z1]); % Draw a line between p0 and p1
p = p1-p0;
alpha = 0.1; % Size of arrow head relative to the length of the vector
beta = 0.1; % Width of the base of the arrow head relative to the length
hu = [x1-alpha*(p(1)+beta*(p(2)+eps)); x1; x1-alpha*(p(1)-beta*(p(2)+eps))];
hv = [y1-alpha*(p(2)-beta*(p(1)+eps)); y1; y1-alpha*(p(2)+beta*(p(1)+eps))];
hw = [z1-alpha*p(3);z1;z1-alpha*p(3)];
hold on
plot3(hu(:),hv(:),hw(:)) % Plot arrow head
grid on
xlabel('x')
ylabel('y')
zlabel('z')
hold off
else
error('p0 and p1 must have the same dimension')
end
elseif max(size(p0))==2
if max(size(p1))==2
x0 = p0(1);
y0 = p0(2);
x1 = p1(1);
y1 = p1(2);
plot([x0;x1],[y0;y1]); % Draw a line between p0 and p1
p = p1-p0;
alpha = 0.1; % Size of arrow head relative to the length of the vector
beta = 0.1; % Width of the base of the arrow head relative to the length
hu = [x1-alpha*(p(1)+beta*(p(2)+eps)); x1; x1-alpha*(p(1)-beta*(p(2)+eps))];
hv = [y1-alpha*(p(2)-beta*(p(1)+eps)); y1; y1-alpha*(p(2)+beta*(p(1)+eps))];
hold on
plot(hu(:),hv(:)) % Plot arrow head
grid on
xlabel('x')
ylabel('y')
hold off
else
error('p0 and p1 must have the same dimension')
end
else
error('this function only accepts 2D or 3D vector')
end
end
0 Kommentare
Akzeptierte Antwort
Matt J
am 27 Aug. 2020
It might be easier just to use this File Exchange submission:
4 Kommentare
Matt J
am 27 Aug. 2020
Bearbeitet: Matt J
am 27 Aug. 2020
As long as you download the .m file from the link I gave you to somewhere Matlab can see it, it will work like any of the other Matlab commands that you have been using. Here is my modification of your code:
[X1,Y1] = meshgrid(1:0.025:1.7,0.05:0.05:0.25);
p00_1 = 1.289;
p10_1 = -0.3693;
p01_1 = 0.7187;
p20_1 = 0.1467;
p11_1 = -1.188;
p02_1 = 1.188;
colormap(flipud(jet));
Z1 = p00_1 + p10_1.*X1 + p01_1.*Y1 + p20_1.*X1.^2 + p11_1.*X1.*Y1 + p02_1.*Y1.^2
s1 = surf(X1,Y1,Z1,'FaceColor','interp','EdgeColor', 'none')
colorbar;
hold on;
%Patch
Z2 = 0.9 + 0*X1 + 0*Y1
s2 = surf(X1,Y1,Z2,'FaceColor','none','FaceAlpha',1.0,'EdgeColor','none')
v = [1.7 0.05 0.9; 1.7 0.1689 0.9; 1 0.05 0.9; 1.3909 0.25 0.9 ; 1 0.25 0.9; 1 0.05 0.9];
f = [1 2 3 4 5 6];
p = patch('Faces',f,'Vertices',v,'FaceColor',[17 17 17]/30,'FaceAlpha',1.0,'EdgeColor','k','LineWidth',0.5);
zdiff = Z1 - Z2;
C = contours(X1, Y1, zdiff, [0 0]);
% Extract the x- and y-locations from the contour matrix C.
xL = C(1, 2:end);
yL = C(2, 2:end);
% Interpolate on the first surface to find z-locations for the intersection line.
zL = interp2(X1, Y1, Z1, xL, yL);
% Visualize the line.
line(xL, yL, zL, 'Color', 'k', 'LineWidth', 1.0);
% Label axes
xlabel( 'f_{u}/f_{y}');
ylabel([char(949) '_{u}']);
zlabel( 'F_{max}/F_{soll}');
xlim([1 1.7])
ylim([0.05 0.25])
zlim([0.0 1.1])
grid on
title('S355 LP=0 KV=100J')
v = [0.9 0.9]
%contour(X1,Y1,Z1,v)
M1 = contour(X1,Y1,Z1,v,'red','LineWidth',2.0)
%Achsenrichtung
set(gca,'xticklabel',num2str(get(gca,'xtick')','%.2f'))
set(gca,'yticklabel',num2str(get(gca,'ytick')','%.2f'))
set(gca,'zticklabel',num2str(get(gca,'ztick')','%.2f'))
arrow3( [1.7 0.16 0.9] , [1.7 0.16 0.0] ) %<----- ADDED by Matt J
and here is what I got:

Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Surface and Mesh Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!