Recursion in matrix calculation
8 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
How does recursion work in this context, as in how did the function CalDet manage to calculate the determinant of the minor without explicitly writing an equation?
function [determinant] = CalDet(M)
dimensionM = size(M);
if (dimensionM(1) == 1)
determinant = M(1, 1);
else
determinant = 0;
for i = 1:dimensionM(2)
determinant = determinant + (-1)^(i+1) * M(1, i) * CalDet(MMin(M, 1, i));
end
end
end
function [MatrixMinor] = MMin(M, i, j)
dimensionM = size(M);
MatrixMinor = M([1:(i-1) (i+1):dimensionM(1)], [1:(j-1) (j+1):dimensionM(2)]);
end
0 Kommentare
Antworten (1)
James Tursa
am 25 Aug. 2020
Bearbeitet: James Tursa
am 25 Aug. 2020
This uses recursive calls (CalDet calls CalDet with smaller matrices until the size is 1x1). I.e., the recursion continues all the way down until the input is a 1x1 matrix, at which point the result is simply M(1,1) and then the results get passed back up through the stack of calls.
See Laplace's expansion and the adjugate matrix here:
BTW, this is not a good numerical technique.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Desktop finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!