Jacobi Plane rotation for a matrix A
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How to perform the Jacobi Rotation (Jacobi Method) for given matrix 
There exists a rotation (c = cos(theta) and s = sin(theta))

For example how can we estimate rotation for the following matrix
A = [-17.7147 -38.4117 30.6475
-51.3024 17.3859 -10.0354
-19.3323 -38.8931 30.3686
-51.2891 18.9043 -11.1523
-21.42 -39.2796 29.9065
-51.1701 20.7146 -12.4891
-24.2543 -39.5276 29.3515
-51.0782 22.9095 -14.1458]
Using C++ Eigen libaray the result is following: http://eigen.tuxfamily.org/dox-3.2/classEigen_1_1JacobiRotation.html
Result = [ 110.564 -7.77137 -0.308057
0 87.445 -64.7691
0 0 1.86159
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0]
Using matlab inbuilt function qr ([~,R]=qr(A)) gives me the following:
R = [ 110.5645 -7.7714 -0.3081
0 -87.4451 64.7691
0 0 -1.8616
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0]
As you can see the first row result is same in C++ and matlab.
whereas the second and third row signs are not matching.
What is the correct solution or how can it be implemented in matlab?
Thank you!!
0 Kommentare
Antworten (1)
KSSV
am 21 Aug. 2020
Define the ngle of your rotation theta:
A = [-17.7147 -38.4117 30.6475
-51.3024 17.3859 -10.0354
-19.3323 -38.8931 30.3686
-51.2891 18.9043 -11.1523
-21.42 -39.2796 29.9065
-51.1701 20.7146 -12.4891
-24.2543 -39.5276 29.3515
-51.0782 22.9095 -14.1458] ;
theta = pi/4 ;
R = [cos(theta) sin(theta) 0 ;
-sin(theta) cos(theta) 0 ;
0 0 1] ;
Ar = A*R
1 Kommentar
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!