How do I use muller method for solving multivariable equations?
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have two equations of 2 variables. I tried using 'solve' but it keeps on calculating for hours together with no results. I would like to use Muller method as I have used it before and I can define start points and number of iterations. I can also check the residual value. Can anyone please suggest, how can I use Muller for solving multivariable equations?
2 Kommentare
Antworten (1)
Alan Stevens
am 24 Aug. 2020
Bearbeitet: Alan Stevens
am 24 Aug. 2020
I guess there are a few options.
- If you have the Opimisation toolbox, use fsolve.
- In your second equation replace V^2 + W^2 by, say, Rsq and solve for Rsq. Then express V as a function of W, knowing Rsq. Then use fzero to find W. The code structure might look something like the following (I'm unable to test it because I don't have your constants).
Rsq = ((2*(b+L*tand(alpha))/lambda0)^2)*(pi^2)*(mewr*epir-1)/k0a^2;
Vfn = @(W) sqrt(Rsq - W.^2);
W0 = ....; % Insert your initial guess
W = fzero(@Wfn, W0);
V = Vfn(W);
function WW = Wfn(W)
V = Vfn(W);
WW = (epir*(diff(besselj(1,V))/(V*k0a*besselj(1,V))) ...
-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))*(mewr*(diff(besselj(1,V))/(V*k0a*besselj(1,V))) ...
-(diff(besselk(1,W))/(W*k0a*besselk(1,W))))-((V^2+W^2)*(V^2+mewr*epir*W^2))/(V^4*W^4*k0a^4);
end
3. An alternative to using fzero with option 2 is to program the Muller method yourself. However, I suspect fzero is the better option.
5 Kommentare
Alan Stevens
am 26 Aug. 2020
Ah, fzero only deals with real numbers I'm afraid. I guess you need to look at the Optimisation toolbox.
Siehe auch
Kategorien
Mehr zu Polynomials finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!