Symbolic Derivative in matlab

5 Ansichten (letzte 30 Tage)
HN
HN am 17 Aug. 2020
Bearbeitet: HN am 18 Aug. 2020
Can matlab diffrentiate F with respect to θ , ϕ and ψ only ?.
Any help is apperciated

Akzeptierte Antwort

KSSV
KSSV am 17 Aug. 2020
You can carry on symbolic calculations. Read about diff.
  7 Kommentare
KSSV
KSSV am 18 Aug. 2020
syms A B C t th
R = -A*(cos(t)-cos(t))+B*cos(th)*sin(t);
S = A*sin(t)*sin(t)-B*cos(t)+C*cos(t);
phi=atan(R/S)
HN
HN am 18 Aug. 2020
Bearbeitet: HN am 18 Aug. 2020
Why running on live script and script gives different result for the same expression?
syms syms t phi(t) theta(t) psi(t) dphi dtheta dpsi rp L alpha beta
x=rp*sin(alpha)*(cos(theta)*sin(phi) - cos(phi)*sin(psi)*sin(theta)) - rp*cos(alpha)*(cos(phi)*cos(theta) + sin(phi)*sin(psi)*sin(theta)) + (rp*cos(psi)*(sin(alpha + phi) - sin(phi)))/tan(alpha)
diff(x, t)
using matlab mlx and matlab script. Both gives different result
mlx gives
vx=rp*cos(psi(t))*cos(theta(t))*sin(phi(t))*sin(alpha) - rp*cos(phi(t))*cos(psi(t))*cos(theta(t))*cos(alpha)
while running on matlab script gives
vx=((rp*cos(psi(t))*(cos(alpha + phi(t)) - cos(phi(t)))*diff(phi(t), t))/tan(alpha) - rp*sin(alpha)*(sin(phi(t))*sin(theta(t))*diff(theta(t), t) - cos(phi(t))*cos(theta(t))*diff(phi(t), t) + cos(phi(t))*cos(psi(t))*sin(theta(t))*diff(psi(t), t) + cos(phi(t))*cos(theta(t))*sin(psi(t))*diff(theta(t), t) - sin(phi(t))*sin(psi(t))*sin(theta(t))*diff(phi(t), t)) - rp*cos(alpha)*(cos(phi(t))*sin(psi(t))*sin(theta(t))*diff(phi(t), t) - cos(phi(t))*sin(theta(t))*diff(theta(t), t) - cos(theta(t))*sin(phi(t))*diff(phi(t), t) + cos(psi(t))*sin(phi(t))*sin(theta(t))*diff(psi(t), t) + cos(theta(t))*sin(phi(t))*sin(psi(t))*diff(theta(t), t)) - (rp*sin(psi(t))*(sin(alpha + phi(t)) - sin(phi(t)))*diff(psi(t), t))/tan(alpha))

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by