Concatenate x amount of matrices
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hampus Augustsson
am 12 Aug. 2020
Bearbeitet: hosein Javan
am 13 Aug. 2020
I have a FEM problem that i want to solve with a matlab script so that it can be used for future questions. I´m trying to concatenate x number of known 4x4 matrices diagonaly to form a large 2(x+1),2(x+1) matrix. Examples would be one 4x4 matrice into a 4x4 matrice or three 4x4 matrice into a 8x8 matrix. in the end i want it to look like this but on a bigger scale:
A=[k1 -k1;-k1 k1], B=[k2,-k2; -k2 k2] => C=[k1 -k1 0 ; 0 -k1 + k2 k2; 0 -k2 k2]
I have tried to solve this with this code:
K = sym(zeros( 2*(x+1) , 2*(x+1) ) );
for k = 1:x
K(k:2*((k+1)),k:(2*(k+1))) = K( k:(2*(k+1)) , k:(2*(k+1)) )+C{x};
end
This is part of a script there the user defines the amount of matrices. I made similar loop so i belive its the indexing within the loop that is the problem but dont know how to solve it. Is it possible to solve this problem simply within this loop?
Thanks in advance
2 Kommentare
hosein Javan
am 12 Aug. 2020
if you could write a general form of your matrix in an image or latex equation, it would be more comprehensible. I can see no pattern of how A & B result in C. please explain more
Akzeptierte Antwort
David Hill
am 13 Aug. 2020
x=length(C);
K=zeros(2*(x+1));
for i=1:x
K=K+blkdiag(repmat(zeros(2),i-1,i-1),C{i},repmat(zeros(2),x-i,x-i));
end
0 Kommentare
Weitere Antworten (2)
hosein Javan
am 13 Aug. 2020
Bearbeitet: hosein Javan
am 13 Aug. 2020
after a few (or maybe a lot!) thinking, I found the pattern. I used symbolic to specify each element by its name rather than value. actually it wasn't really concatenation since every 3 element the matrices overlap and we are taking their sums. it works for any number of "k" matrices which in here you called "x".
In the case of 3 matrices:
k{1} = sym('k1_',4); k{1}
k{2} = sym('k2_',4); k{2}
k{3} = sym('k3_',4); k{3}
x = length(k); % number of "k" matrices
n = 4 + (x-1)*2; % dimension of matrix "K" concatenated(not exactly!)
K = sym(zeros(n)); % initilize "K" by all zeros
for i = 1:x
j = 2*i-1;
K(j:j+3,j:j+3) = K(j:j+3,j:j+3) + k{i};
end
K
the result:
k{1} =
[ k1_1_1, k1_1_2, k1_1_3, k1_1_4]
[ k1_2_1, k1_2_2, k1_2_3, k1_2_4]
[ k1_3_1, k1_3_2, k1_3_3, k1_3_4]
[ k1_4_1, k1_4_2, k1_4_3, k1_4_4]
k{2} =
[ k2_1_1, k2_1_2, k2_1_3, k2_1_4]
[ k2_2_1, k2_2_2, k2_2_3, k2_2_4]
[ k2_3_1, k2_3_2, k2_3_3, k2_3_4]
[ k2_4_1, k2_4_2, k2_4_3, k2_4_4]
k{3} =
[ k3_1_1, k3_1_2, k3_1_3, k3_1_4]
[ k3_2_1, k3_2_2, k3_2_3, k3_2_4]
[ k3_3_1, k3_3_2, k3_3_3, k3_3_4]
[ k3_4_1, k3_4_2, k3_4_3, k3_4_4]
K =
[ k1_1_1, k1_1_2, k1_1_3, k1_1_4, 0, 0, 0, 0]
[ k1_2_1, k1_2_2, k1_2_3, k1_2_4, 0, 0, 0, 0]
[ k1_3_1, k1_3_2, k1_3_3 + k2_1_1, k1_3_4 + k2_1_2, k2_1_3, k2_1_4, 0, 0]
[ k1_4_1, k1_4_2, k1_4_3 + k2_2_1, k1_4_4 + k2_2_2, k2_2_3, k2_2_4, 0, 0]
[ 0, 0, k2_3_1, k2_3_2, k2_3_3 + k3_1_1, k2_3_4 + k3_1_2, k3_1_3, k3_1_4]
[ 0, 0, k2_4_1, k2_4_2, k2_4_3 + k3_2_1, k2_4_4 + k3_2_2, k3_2_3, k3_2_4]
[ 0, 0, 0, 0, k3_3_1, k3_3_2, k3_3_3, k3_3_4]
[ 0, 0, 0, 0, k3_4_1, k3_4_2, k3_4_3, k3_4_4]
0 Kommentare
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!