Solve 2 equations with two unknowns and an array

2 Ansichten (letzte 30 Tage)
Vito Di Bernardo
Vito Di Bernardo am 10 Aug. 2020
Kommentiert: Vito Di Bernardo am 15 Aug. 2020
Should I use a for-loop instead of an array(preferred)? (2018a)
First try (When I put j equal to a roundom value between 1 and 1000, matlab yields a solution):
j = 1:1:1000;
T = 343;
n_H2O = 2;
alpha = 0.5;
j_0 = 1;
P_a = 3;
P_c = 3;
P_SAT = 0.307;
X_o2_d = 0.19;
X_H2O_a = 0.1;
X_H2O_d = 0.1;
t_a = 0.00035;
t_c = 0.00035;
t_M = 0.000125;
D_eff_O2_H2O = 0.000149;
D_eff_H2_H2O = 0.0000295;
F = 96485;
R = 8.314;
D_lambda = 0.00000381;
n_SAT_drag = 2.5;
M_m = 1;
rho_dry = 0.00197;
syms x
syms y
a_w_anode = (P_a./P_SAT).*(X_H2O_a-((t_a.*alpha_unknown.*j.*R.*T)./(n_H2O.*F.*P_a.*101325.*D_eff_H2_H2O)));
a_w_cathode = (P_c./P_SAT).*(X_H2O_d-((t_c.*(1+alpha_unknown).*j.*R.*T)./(n_H2O.*F.*P_c.*101325.*D_eff_O2_H2O)));
lambda_anode_1 = 14.*a_w_anode;
lambda_cathode_1 = 10+4.*a_w_cathode;
lambda_anode_2 = ((11.*alpha_unknown)./n_SAT_drag)+C;
lambda_cathode_2 = ((11.*alpha_unknown)./n_SAT_drag)+C.*exp((j.*M_m.*n_SAT_drag.*t_M)./(22.*F.*rho_dry.*D_lambda));
Eq1 = 14.*a_w_anode == ((11.*alpha_unknown)./n_SAT_drag)+C;
Eq2 = 10+4.*a_w_cathode == ((11.*alpha_unknown)./n_SAT_drag)+C.*exp((j.*M_m.*n_SAT_drag.*t_M)./(22.*F.*P_c.*D_lambda))
[x,y] = solve(Eq1,Eq2,[alpha_unknown,C])
alpha_unknown_sol = double(x)
C_sol = double(y)
%lambda(z) = ((11.*alpha_unknown_sol)./n_SAT_drag)+C_sol.*exp((j.*M_m.*n_SAT_drag.*z)./(22.*F.*P_c.*D_lambda));
%sigma(Z) = (0.005193.*lambda(z)-0.00326).*exp(1268.*(1./303-1/T));
fun = @(z) 1./(0.005193.*((11.*alpha_unknown_sol)./n_SAT_drag)+C_sol.*exp((j.*M_m.*n_SAT_drag.*z)./(22.*F.*P_c.*D_lambda))-0.00326).*exp(1268.*(1./303-1./T))
ASR_m = integral(fun,0,t_M,'ArrayValued',true)
V_ohmic = j.*ASR_m
plot(j,V_ohmic,'-*');
second try:
j = 1:1:1000;
T = 343;
n_H2O = 2;
alpha = 0.5;
j_0 = 1;
P_a = 3;
P_c = 3;
P_SAT = 0.307;
X_o2_d = 0.19;
X_H2O_a = 0.1;
X_H2O_d = 0.1;
t_a = 0.00035;
t_c = 0.00035;
t_M = 0.000125;
D_eff_O2_H2O = 0.000149;
D_eff_H2_H2O = 0.0000295;
F = 96485;
R = 8.314;
D_lambda = 0.00000381;
n_SAT_drag = 2.5;
M_m = 1;
rho_dry = 0.00197;
syms x
syms y
a_w_anode = (P_a./P_SAT).*(X_H2O_a-((t_a.*alpha_unknown.*j.*R.*T)./(n_H2O.*F.*P_a.*101325.*D_eff_H2_H2O)));
a_w_cathode = (P_c./P_SAT).*(X_H2O_d-((t_c.*(1+alpha_unknown).*j.*R.*T)./(n_H2O.*F.*P_c.*101325.*D_eff_O2_H2O)));
lambda_anode_1 = 14.*a_w_anode;
lambda_cathode_1 = 10+4.*a_w_cathode;
lambda_anode_2 = ((11.*alpha_unknown)./n_SAT_drag)+C;
lambda_cathode_2 = ((11.*alpha_unknown)./n_SAT_drag)+C.*exp((j.*M_m.*n_SAT_drag.*t_M)./(22.*F.*rho_dry.*D_lambda));
syms t
Eq1 = 14.*a_w_anode == ((11.*alpha_unknown)./n_SAT_drag)+C;
Eq2 = 10+4.*a_w_cathode == ((11.*alpha_unknown)./n_SAT_drag)+C.*exp((t.*M_m.*n_SAT_drag.*t_M)./(22.*F.*P_c.*D_lambda))
sol = solve([Eq1,Eq2],[x,y])
x = subs(sol.x, t, j)
y = subs(sol.y, t, j)
alpha_unknown_sol = double(x)
C_sol = double(y)
%lambda(z) = ((11.*alpha_unknown_sol)./n_SAT_drag)+C_sol.*exp((j.*M_m.*n_SAT_drag.*z)./(22.*F.*P_c.*D_lambda));
%sigma(Z) = (0.005193.*lambda(z)-0.00326).*exp(1268.*(1./303-1/T));
fun = @(z) 1./(0.005193.*((11.*alpha_unknown_sol)./n_SAT_drag)+C_sol.*exp((j.*M_m.*n_SAT_drag.*z)./(22.*F.*P_c.*D_lambda))-0.00326).*exp(1268.*(1./303-1./T))
ASR_m = integral(fun,0,t_M,'ArrayValued',true)
V_ohmic = j.*ASR_m
plot(j,V_ohmic,'-*');
The error with first try:
Error using plot
Vectors must be the same length.
Error in Ohmic_losses (line 56)
plot(j,V_ohmic,'-*');
The error with second try:
Error using symengine
Number of elements in NEW must match number in OLD.
Error in sym/subs>mupadsubs (line 160)
G = mupadmex('symobj::fullsubs',F.s,X2,Y2);
Error in sym/subs (line 145)
G = mupadsubs(F,X,Y);
Error in Ohmic_losses (line 43)
x = subs(sol.x, t, j)

Antworten (1)

hosein Javan
hosein Javan am 10 Aug. 2020
you are using symbolic toolbox. I recommend to make a function file looking like this:
function y=eq(x)
% enter equations
% the equations must be in the form of f(x)=0
% for example if sin(x)=2*x then write y(1)=sin(x)-2*x
end
then use the following to solve the system numerically:
x0 = [0,0]; % initial guess of unknowns x1 and x2
x_sol = fsolve(@eq,x0) % solutions
  7 Kommentare
hosein Javan
hosein Javan am 12 Aug. 2020
don't mention it. best wishes.
Vito Di Bernardo
Vito Di Bernardo am 15 Aug. 2020
Thank you su much!

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by