SVM classification with different kernels

7 Ansichten (letzte 30 Tage)
caterina
caterina am 27 Dez. 2012
Kommentiert: Jeremy Huard am 31 Jan. 2023
I am using an SVM (SVM_train, Bioinformatics toolbox) to classify data, and I would like to have my final trained SVM models with different kernel functions. I didn't understand how to specify my own kernel maps: if I would like to use a Cauchy kernel defined as
k=(1/(1+(|u-v|^2/sigma))
where u,v are the vectors of the X data, and sigma is the parameter defined by the user (sigma=2.5). How I have to edit this matlab statement?
svmStruct = svmtrain(X,group,'Kernel_Function', 'rbf','RBF_Sigma', 2.5, 'Method', 'QP');
Thank you!
  1 Kommentar
Jeremy Huard
Jeremy Huard am 31 Jan. 2023
Users using R2014b or newer should use the fitcsvm function for for one-class and binary classification or fitcecoc for multiclass classification instead.
There you can specify a custom kernel function by adding the 'KernelFunction','myfunction' name-value pair, where myfunction is the name of your function containing the kernel function definition.

Melden Sie sich an, um zu kommentieren.

Antworten (4)

Ilya
Ilya am 27 Dez. 2012

caterina
caterina am 28 Dez. 2012
Hi Ilya anche thank you for you answer. I read it that thread before writing and still I did not understand what it is wrong in my code. I created my kernel code that I saved in a folder 'pgm_qkda'. You can find the code below
clear all
clc;
addpath('/Users/Documents/Parallels/shared/D/KQDA/matlab2/pgm_qda');
x=[3 3 4 5 6 7 8 0.1 0.2
3 4 3 5 7 7 5 0.5 0.6
7 7 2 3 3 4 5 0.4 0.5
3 3 4 5 6 2 6 0.2 0.3];
group=[1,1, 2, 2]';
p1=2.5;
svmStruct = svmtrain(x,group,'Kernel_Function', @(u,v) kfun(u,v,p1), 'Method', 'QP');
The kfun function is defined as:
function kval = kfun(u,v,p1);
dot=((u-v)*(u-v)')/p1;
kval = 1/(1+dot);
Matlab gives me a warning message: Error using ==> svmtrain at 453 Error calculating the kernel function: Matrix dimensions must agree.
I do not understand where is my mistake. If you can help me I really appreciate.
  2 Kommentare
Ilya
Ilya am 28 Dez. 2012
Replace
kval = 1/(1+dot);
with
kval = 1./(1+dot);
./ is for elementwise division. / is for matrix division.
Also, please do not post follow-up questions as answers to your own posts. Use comments for that.
Fourth Sem Geethanjali Electrical and Electronics Engineering
hi
svmStruct = svmtrain(x,group,'Kernel_Function', @(u,v) kfun(u,v,p1), 'Method', 'QP');
how will the function call change if i use fitcsvm instead of svmtrain.
can you please help me.

Melden Sie sich an, um zu kommentieren.


Sandy
Sandy am 3 Okt. 2014
Hi Caterina,
Just want to check whether you are able to rectify tha above issues. I am also getting the same error. Will you post me the code for above custom kernel.
Thanks in advance.

muqdad aljuboori
muqdad aljuboori am 2 Apr. 2017
Hi I very interested in this discussion I tried to apply the new funcion in my project but it doesnt work that what i did
SVR1 = fitrsvm(TrainInputs,TrainTargets,...
'KernelFunction', @(u,v) kfun3(u,v) ,...
'KernelScale','auto','Standardize',true);__
and the error is
Error using classreg.learning.modelparams.SVMParams.make (line 225) You must pass 'KernelFunction' as a character vector.
Error in classreg.learning.FitTemplate/fillIfNeeded (line 598) this.MakeModelParams(this.Type,this.MakeModelInputArgs{:});
Error in classreg.learning.FitTemplate.make (line 124) temp = fillIfNeeded(temp,type);
any suggestion ??? thanks
  1 Kommentar
Jeremy Huard
Jeremy Huard am 31 Jan. 2023
You should specify the kernel function as char array:
SVR1 = fitrsvm(TrainInputs,TrainTargets,...
'KernelFunction', 'kfun3',...
'KernelScale','auto','Standardize',true);

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by