How to index Neural Network for loop

5 Ansichten (letzte 30 Tage)
Justin Hayes
Justin Hayes am 1 Aug. 2020
Kommentiert: Justin Hayes am 7 Aug. 2020
I would like to run this loop 4 times for the InitialLearnRate values of 0.0001, 0.001, 0.01, and 0.1. I would like to index the loop as well so I can compare the fracCorrect for each loop. Thank you!
InitialLearnRate = [0.0001,0.001,0.01,0.1]
augmentedDS_test = zeros(1,length(InitialLearnRate))
predictions = zeros(1,length(InitialLearnRate))
fracCorrect = zeros(1,length(InitialLearnRate))
for i = InitialLearnRate
imageDS = imageDatastore('deeplearning_course_files','IncludeSubfolders',true,'LabelSource','foldernames');
[wormTrain,wormTest] = splitEachLabel(imageDS,0.2); % takes x images from
augmentedDS_train = augmentedImageDatastore([227 227],wormTrain,'ColorPreprocessing','gray2rgb')
augmentedDS_test = augmentedImageDatastore([227 227],wormTest,'ColorPreprocessing','gray2rgb')
net = alexnet;
layers = net.Layers
fc = fullyConnectedLayer(2);
layers(end-2) = fc;
layers(end) = classificationLayer;
options = trainingOptions('sgdm','InitialLearnRate',i,'Momentum',0.1,'MaxEpochs',15)
[wormnet,info] = trainNetwork(augmentedDS_train,layers,options);
predictions = classify(wormnet,augmentedDS_test);
wormActual = wormTest.Labels;
numCorrect = nnz(predictions == wormActual);
fracCorrect = numCorrect/numel(predictions)
end
confusionchart(wormTest.Labels,predictions)
plot(info.TrainingLoss)

Akzeptierte Antwort

Anshika Chaurasia
Anshika Chaurasia am 6 Aug. 2020
You can consider trying indexing as given below:
for i = 1:length(InitialLearnRate)
....
options = trainingOptions('sgdm','InitialLearnRate',InitialLearnRate(i),'Momentum',0.1,'MaxEpochs',15)
....
fracCorrect(i) = numCorrect/numel(predictions)
...
end

Weitere Antworten (0)

Kategorien

Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by