Seperate solutions from solution set
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
equation :
eqn1= tau + (6940736682536601*((40564819207303339226271666937215*((7958672037255683*tau)/211285985543901728)^(1/2))/40564819207303340847894502572032 - 24338891524382005378048193971515/81129638414606681695789005144064))/(4503599627370496*((100*((10371143640436539267540387993179*((7958672037255683*tau)/211285985543901728)^(1/2))/40564819207303340847894502572032 - 6222686184261924031538395930759/81129638414606681695789005144064)*((40564819207303339226271666937215*((7958672037255683*tau)/211285985543901728)^(1/2))/40564819207303340847894502572032 + 121694457621910018197126045574617/405648192073033408478945025720320))/(9*((40564819207303339226271666937215*((7958672037255683*tau)/211285985543901728)^(1/2))/40564819207303340847894502572032 - 4346557462141479/405648192073033408478945025720320)^2) - 6396823589615229/2251799813685248)*((8807500455112451*((7958672037255683*tau)/211285985543901728)^(1/2))/2251799813685248 - 5284500273067471/4503599627370496)) == 0
I got below answer after this command :simplify(solve(eqn1,tau))
tau ~= 86770006143284104137770088001067660899914768136/36315918750142936955822459988207044957384974699 & tau ~= (211285985543901728*((2^(1/2)*357313339412824509981525108943721604071071001084689465^(1/2)*1361129467683753853853498429727072845824i)/14095378286272805020446624941140030438778625454313157575975 - 1448852487380493/135216064024344464087572223124050)^2)/7958672037255683 & tau ~= (211285985543901728*((2^(1/2)*357313339412824509981525108943721604071071001084689465^(1/2)*1361129467683753853853498429727072845824i)/14095378286272805020446624941140030438778625454313157575975 + 1448852487380493/135216064024344464087572223124050)^2)/7958672037255683 & 563099457385191142840662871881142688341613012430*((7958672037255683*tau)/211285985543901728)^(1/2) + 365375409332725729550921208179070754913983135744*tau*((100*((10371143640436539267540387993179*((7958672037255683*tau)/211285985543901728)^(1/2))/40564819207303340847894502572032 - 6222686184261924031538395930759/81129638414606681695789005144064)*((40564819207303339226271666937215*((7958672037255683*tau)/211285985543901728)^(1/2))/40564819207303340847894502572032 + 121694457621910018197126045574617/405648192073033408478945025720320))/(9*((40564819207303339226271666937215*((7958672037255683*tau)/211285985543901728)^(1/2))/40564819207303340847894502572032 - 4346557462141479/405648192073033408478945025720320)^2) - 6396823589615229/2251799813685248)*((8807500455112451*((7958672037255683*tau)/211285985543901728)^(1/2))/2251799813685248 - 5284500273067471/4503599627370496) == 168929837215557355639015285929811462546538920515
there are 4 "&" symbols in the solution.
First Q1: does this mean, Is the first solution is :tau ~= 86770006143284104137770088001067660899914768136/36315918750142936955822459988207044957384974699.
I am expecting real and non -ve solution.after trying double(solve(eqn1,tau)) ,I got -ve and imaginary solutions.
Second Q2:If yes for first Q1, I tried to seperate using AND symbol after converting it into string ,then tried seperate first solution.then I am not able to convert it back numerical solution.
Could you please help.
0 Kommentare
Antworten (1)
Ayush Gupta
am 9 Sep. 2020
The solve function when used on eqn1 gives the following result as 3*1 symbolic table.
(211285985543901728*root(z^5 + (373359593908487267222143047811449852406397047099*z^4)/714549327259756936651062770353714189966575140864 - (9963400966170935713565782676544756915605254097742180546676602848293362482093379754424030677522172292040250319093*z^3)/3062121757193925444931997267043799011637238603433741914524424715305522666934101597267131075919872 + (29890202898512807144259261729678481392884246789538446809565750027578822996907944833124593257837350568132962338861*z^2)/30621217571939254449319972670437990116372386034337419145244247153055226669341015972671310759198720 + (561000993811838372282418673727435546046730341703538223700285867392791737986929061*z)/435153674117419405566237922335488834113055901786103435501392015582030505091509780480 - 6011176935019138052153154240987442970148590996828131503873955683/870307348234838811132475844670977668226111803572206871002784031164061010183019560960, z, 1)^2)/7958672037255683
(211285985543901728*root(z^5 + (373359593908487267222143047811449852406397047099*z^4)/714549327259756936651062770353714189966575140864 - (9963400966170935713565782676544756915605254097742180546676602848293362482093379754424030677522172292040250319093*z^3)/3062121757193925444931997267043799011637238603433741914524424715305522666934101597267131075919872 + (29890202898512807144259261729678481392884246789538446809565750027578822996907944833124593257837350568132962338861*z^2)/30621217571939254449319972670437990116372386034337419145244247153055226669341015972671310759198720 + (561000993811838372282418673727435546046730341703538223700285867392791737986929061*z)/435153674117419405566237922335488834113055901786103435501392015582030505091509780480 - 6011176935019138052153154240987442970148590996828131503873955683/870307348234838811132475844670977668226111803572206871002784031164061010183019560960, z, 3)^2)/7958672037255683
(211285985543901728*root(z^5 + (373359593908487267222143047811449852406397047099*z^4)/714549327259756936651062770353714189966575140864 - (9963400966170935713565782676544756915605254097742180546676602848293362482093379754424030677522172292040250319093*z^3)/3062121757193925444931997267043799011637238603433741914524424715305522666934101597267131075919872 + (29890202898512807144259261729678481392884246789538446809565750027578822996907944833124593257837350568132962338861*z^2)/30621217571939254449319972670437990116372386034337419145244247153055226669341015972671310759198720 + (561000993811838372282418673727435546046730341703538223700285867392791737986929061*z)/435153674117419405566237922335488834113055901786103435501392015582030505091509780480 - 6011176935019138052153154240987442970148590996828131503873955683/870307348234838811132475844670977668226111803572206871002784031164061010183019560960, z, 4)^2)/7958672037255683
Refer to the following code on how to get the solution:
syms tau;
eqn1 = tau + (6940736682536601*((7958672037255683*tau)/211285985543901728)^(1/2) - 20822210047609803/10)/(((8807500455112451*((7958672037255683*tau)/211285985543901728)^(1/2))/2251799813685248 - 5284500273067471/4503599627370496)*((4503599627370496*(((7958672037255683*tau)/211285985543901728)^(1/2) + 3/10)*((115142824613074125*((7958672037255683*tau)/211285985543901728)^(1/2))/4503599627370496 - 69085694767844475/9007199254740992))/(9*(((7958672037255683*tau)/211285985543901728)^(1/2) - 3477245969713183/324518553658426726783156020576256)^2) - 12793647179230458)) == 0;
sol = solve(eqn1, tau);
This should not give any & in the result. There are some more constraints which can be enforced by going through the documentation of solve here.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!