How to simplify polynomial expansion?
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi Matlab Expert,
I would like to know whether a very long polynomial/ transfer function can be simplified into simple equation? Here is the example:
(204968618250053*(584538599205637399086599987135947635451994771705480410605494724605739664408576*z^2 + 422925278262421791614499596366110068734536615324831654028242248627900121088*z - 562034690169857024583161294350028872841265995589812041494482936727596957696000))/(386856262276681335905976320*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (447741983102391*(6981406932819801854409645172378584299508358365678721409026875796016332800*z^2 - 14060267183868235010495647745615491862070477638281599174319088939466489856*z + 7076949635759948779787857807944294354431191559659510600954019088246505472))/(142962266571249025024*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (5788597805039735*(196845455631738875350006527089503631641108477737992176481075200*z^2 + 213499342509751794414898651875580780507177983147674932525137920*z + 17492749683950302063970526297851198891671980880519887444770816))/(12781822672896*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (1024843091250265*(430627536192026783897911635856137629357959544584379917182598905856*z^2 + 4240917730283025791189675815432061078943960832707948157312434176*z + 692690418279477323535171459109694039392635377988006571178721280))/(6755399441055744*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (3731183192519925*(44411111195987892257013963188850689410654266331841974763520*z^2 + 87915803750142195349768749557328505454356254637028798365696*z + 8722123876189377499121331979872612611687774916817123803136))/(4160749568*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (6525747434972147*(- 11573813613581748956010638412113825149809693402020063798372600910038141415456768*z^2 + 220792948692657246210195123361446121736065131965637842292725081136480345128960*z + 11353020665395612576938494406006621945911326392702098405589742127336896606502912))/(49121460758843889307997249208320*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (32628737174860735*(431359146674410236714672241392314090778194310760649159697657763987456*z^3 - 418432845497916413092305581509467403560566486519288197204122454196224*z^2 + 4314153037836787092795079253967787795533372338423225076243924779008*z + 13992391003240178627509484721241720424970472273946691630794801152))/(857773599427494150144*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) + (1157719561007947*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^3 + 43127593764229068021205536538769243451079788478656972231027650840051748700160*z^2 + 2217781511180268625048049772868654016016138954548982171034168902274777088*z - 14193252661797991997041663248028912493491531820174568492234112553274000277504))/(731966804844795008122880*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183))
This is unreasonable equation yet it is supposed to be 4th order simple equation. It just shows all the lengthy number which I don't even know how to read. Can you guys come up with function to make this simple to read?
Thank you,
Raymond Sutjiono
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 18 Apr. 2011
Maple pretty quickly calculates it as the ratio of a cubic divided by a quartic. The coefficients involved are quite large.
You can get very long coefficients such as that if you input floating point numbers, as by default MuPad converts floating point numbers in to rational values. For example, in a problem earlier today someone wanted to use 0.707 which would have led to a _much _messier answer than what the probable value was, 1/sqrt(2)
I have confirmed that the numerator and denominator of the ratio do not have any roots in common (not even close), so it is not possible to reduce the expression to a polynomial instead of a ratio of polynomials.
0 Kommentare
Weitere Antworten (4)
Andrei Bobrov
am 18 Apr. 2011
factor(v)
ans =
(1050073985609136376117577180218721828864*z^3 - 1065633110957905273283671547044295504128*z^2 - 1005605039090954507740748057427872845024*z + 1030036145611443176612944407325409289073)/(34310943977099766005760*(19342813113834066795298816*z^4 - 38105341268646458384449536*z^3 + 18963692861661811782451200*z^2 - 185845192119942907953152*z - 6296157162660917))
0 Kommentare
Oleg Komarov
am 18 Apr. 2011
syms z
% Now set f = ... all the expression here
f = simplify(f);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Number Theory finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!