1D transport model using finite difference approach

5 Ansichten (letzte 30 Tage)
Sumyia Pervin
Sumyia Pervin am 21 Jul. 2020
How can I develop the model of advection-dispersion equation using initial and boundary condition? Can anyone help me, please?
%dc/dt=Dh/Rf*(d^2c/dx^2)-v/Rf(dc/dx)
clear
clc
%Input model physical parameter for simulation
L=100; % length of modeled domain
t=50; %time
Do=0.027; % molecular diffusion coefficient,m^2/yr
Dm=0.075; %mechanical dispersion coefficient,m^2/yr
Dn=0.02; %effective molecular diffusion coefficient, m^2/yr
alpha=0.15; %Dispersivity, M
v=0.5; %Advective velocity,m/yr
Dz=0.095; % Hydrodynamic Dispersion
n=0.4; % porosity
Rf=1; %Retardation factor
Hf=10; % equivalent height of leachate, M
delta_t=1; %time variation,s
delta_z=1.5; % depth, M
%governing Equation
%(dc/dt)=(Dz/Rf)*(d^2c/dx^2)-(v/Rf)*(dc/dx);
A=(Dz*delta_t)/(Rf*(delta_z)^2);
B=(v*delta_t)/(2*Rf*delta_z);
%finite difference form of governing equation
C(m+1,i)=(1-2*A-2*B)*C(m,i)+A*C(m,i+1)+(A+2*B)*C(m,i-1);
%initial condition
t=0;
z=0;
C(z,0)=0;
C(m,i)=0;
time = 0;
for n=1:nt % Timestep loop
%boundary condition
C(m,i)=0;
Ct(0,t1)=Co-(n/Hf*v)[Ct(0,0)*delta_t+Ct(0,1)*delta_t+Ct(0,2)*delta_t+Ct(0,t-1)*delta_t];
Ct(0,t)=(Co-(n/Hf*v)*(Ct(0,t1)))/[1+(n/Hf*v*delta_t)];

Antworten (0)

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by