Vectorization of while loop

9 Ansichten (letzte 30 Tage)
elchico
elchico am 15 Jul. 2020
Kommentiert: elchico am 3 Okt. 2020
Hi all,
I have a small function, which generates random numbers in a specific interval. The function tests the generated values in respect to a certain bound and recalculates the random numbers again, if the bound is violated. I have to call this function several times (in this case 60 000 times), so this takes a lot of time (3/4 of the total time). I have read about vectorizing the code to improve performance. But I am totally helpless with this task. Your help would be greatly appreciated.
However, if someone has an idea to rewrite the while loop in a different way that would be great, as well.
Michi
Code:
meanValue = 10;
devValue = 1;
numValues = 10000;
presumption = 1;
for i = 1:60000
arrayValues = RandomNums(meanValue, devValue, numValues, presumption);
end
function arrayValues = RandomNums (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
arrayValues = devValue*randn(numValues,1) + meanValue;
% check confidence-limes for each value and create new one if outside
for idx = 1:numel(arrayValues)
while (arrayValues(idx) > (meanValue + presumption*devValue) || arrayValues(idx) < (meanValue - presumption*devValue))
arrayValues(idx) = devValue*randn(1,1,'double') + meanValue;
end
end
end
Performance:
  2 Kommentare
Bruno Luong
Bruno Luong am 15 Jul. 2020
You should look for "truncated gaussian" distribution, and posts how to generate them.
elchico
elchico am 15 Jul. 2020
Hi Bruno,
thank you for your reply. I've tried that, but as far as I understand, it does not make it better. Maybe, I have missed /missunderstood something?
Thanks again!
Code with Comparison:
meanValue = 10;
devValue = 1;
numValues = 10000;
presumption = 1;
for i = 1:10
arrayValues = RandomNums(meanValue, devValue, numValues, presumption);
a = ["arrayValues1",num2str(i)];
disp(a)
pause(0.00001);
end
for ii = 1:10
arrayValues2 = RandomNums2(meanValue, devValue, numValues, presumption);
a = ["arrayValues2",num2str(ii)];
disp(a)
pause(0.00001);
end
function arrayValues = RandomNums (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
arrayValues = devValue*randn(numValues,1) + meanValue;
% check confidence-limes for each value and create new one if outside
for idx = 1:numel(arrayValues)
while (arrayValues(idx) > (meanValue + presumption*devValue) || arrayValues(idx) < (meanValue - presumption*devValue))
arrayValues(idx) = devValue*randn(1,1,'double') + meanValue;
end
end
end
function arrayValues2 = RandomNums2 (meanValue, devValue, numValues, presumption)
%% create rand nums
% normally distributed with meanValue +/- devValue
numValues = round(numValues);
pd = makedist('Normal','mu',meanValue,'sigma',devValue);
confidence = presumption*devValue;
t = truncate(pd,meanValue - confidence,meanValue + confidence);
arrayValues2 = random(t,numValues);
end
Performance:

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Bruno Luong
Bruno Luong am 16 Jul. 2020
meanValue = 10;
devValue = 1;
numValues = 1000000;
presumption = 2;
tic
% Function from here https://www.mathworks.com/matlabcentral/fileexchange/23832-truncated-gaussian
arrayValues = meanValue + TruncatedGaussian(-devValue, presumption*[-1 1], [1 numValues]);
toc % Elapsed time is 0.055511 seconds for one billions random numbers.
% Check histogram
hist(arrayValues,100)
Histogram obtained
  3 Kommentare
Bruno Luong
Bruno Luong am 3 Okt. 2020
It mainly because it uses different method (non rejection) and inverse error function.
elchico
elchico am 3 Okt. 2020
Ok, thank you

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (1)

elchico
elchico am 2 Okt. 2020
Hi Bruno,
one more question to your code: Do you have something similar with Poisson Distribution etc.?
Thanks.
  2 Kommentare
Bruno Luong
Bruno Luong am 2 Okt. 2020
Unfortunately no.
elchico
elchico am 3 Okt. 2020
okay, that is sad for me but: thanks anyways ;-)
May I ask you what is the difference in performance between your code (so fast!) compared to my initial Gauss code? I have to explain this and I am not totally sure about it ...

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Produkte


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by