How to use cross validation/ leave one out in algorithm

63 Ansichten (letzte 30 Tage)
CHHAVI
CHHAVI am 7 Jul. 2020
Bearbeitet: Chhavi Bharti am 5 Feb. 2021

Antworten (1)

Pranav Verma
Pranav Verma am 12 Aug. 2020
Hi Chhavi,
The cvpartition(group,'KFold',k) function with k=n creates a random partition for leave-one-out cross-validation on n observations. Below example demonstrates the aforementioned function,
load('fisheriris');
CVO = cvpartition(species,'k',150); %number of observations 'n' = 150
err = zeros(CVO.NumTestSets,1);
for i = 1:CVO.NumTestSets
trIdx = CVO.training(i);
teIdx = CVO.test(i);
ytest = classify(meas(teIdx,:),meas(trIdx,:),...
species(trIdx,:));
err(i) = sum(~strcmp(ytest,species(teIdx)));
end
cvErr = sum(err)/sum(CVO.TestSize);
Alternatively, you can use cvpartition(n,'LeaveOut') leave-one-out cross-validation.
For further information about the cross-validation in MATLAB, please refer to the link: https://www.mathworks.com/help/stats/cvpartition.html
  1 Kommentar
Chhavi Bharti
Chhavi Bharti am 5 Feb. 2021
Bearbeitet: Chhavi Bharti am 5 Feb. 2021
@Pranav Verma Hi pranav I tried this code. But this is randomly doing the partition. How cound i get an index for tested data?
fold=cvpartition(label,'LeaveOut');
cp=classperf(label);
confmat=0;
for k=1:size(label,2)
trainIdx=fold.training(k); testIdx=fold.test(k);
xtrainc=imgs(trainIdx); ytrainc=label(trainIdx);
xtestc=imgs(testIdx); ytestc=label(testIdx);
xTrainImages=xtrainc';
tTrain=ytrainc;
xTestImages=xtestc';
tTest=ytestc;
%%DNN model
[c,cm,ind,per]=confusion(tTest,y); % y is output of DNN model
end

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by