Is a LSTM parameter to sequence regression possible?

3 Ansichten (letzte 30 Tage)
Linus Taenzer
Linus Taenzer am 18 Jun. 2020
Beantwortet: Divya Gaddipati am 23 Jun. 2020
Hello,
What happens if I have for example 30 different input parameters in a dataset and a corresponding signal as output and I want to predict this signal?
E.g. features are [X1, X2, X3, .... X30] and the label is a time dependent signal of length n [X31(t_1) X(31(t_2) X(31(t_3) .... X31(t_n)]
layers = [ ...
fullyConnectedLayer(30)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(n)
regressionLayer];
This did not work for me so far as I think there is a problem with the input layer?
Can someone help?

Antworten (1)

Divya Gaddipati
Divya Gaddipati am 23 Jun. 2020
For a sequence input, you can use sequenceInputLayer.
sequenceInputLayer(featureDimension)
For more informatiom on sequenceInputLayer, refer to the following link:
Here's an example on Sequence-to-Sequence regression:

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by