
Linear-log regression model (curve fitting)
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ahmad Hani
am 16 Jun. 2020
Kommentiert: Ameer Hamza
am 17 Jun. 2020
Dear all
I reask this question with more details
I have this data
x= [50;81;73;77;127;140;122;125;140;145;180;185;178;96;83;192;182;120;127];
y= [122;126;121;123;135;130;117;119;125;125;135;135;140;140;147;147;144;141;139];
y(x) = α + β10 log10(x) + ξ, : ξ ~ N(0, σ^2), random variable that accounts for shadowing variation modeled with normal distribution and standard deviation (Specifically, is a random variable that accounts for shadowing variation modeled with normal distribution and standard deviation σ, assumed equal to the standard deviation of the regression residuals).

How can I use curve fitting to find the values of α, β and ξ,
Expected Output fitting plot

0 Kommentare
Akzeptierte Antwort
Ameer Hamza
am 17 Jun. 2020
Try this
x = [50;81;73;77;127;140;122;125;140;145;180;185;178;96;83;192;182;120;127];
y = [122;126;121;123;135;130;117;119;125;125;135;135;140;140;147;147;144;141;139];
[x, idx] = sort(x);
y = y(idx);
log_x = 10*log10(x);
X = [ones(size(x)) log_x];
param = X\y;
y_est = X*param;
y_err = y - y_est;
sigma = std(y_err);
plot(x, y, 'r+', x, y_est, 'b-')

2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!