System Identification Toolbox: How can we modify the starting parameters for the armax-algorithm?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Urs Hackstein
am 15 Jun. 2020
Kommentiert: Rajiv Singh
am 10 Aug. 2020
One can calculate ARMA-coefficients using the armax-algorithm from the Systems Identification Toolbox:
estimatedPolymodel=armax(iddata(outputdata,inputdata,tsample),[na nb nc nk], opt);
ARcoeff=estimatedPolymodel.A
MAcoeff=estimatedPolymodel.B
How can we modify the starting parameters for the algorithm (to accelerate and improve the results)?
0 Kommentare
Akzeptierte Antwort
Rajiv Singh
am 15 Jun. 2020
You can set the A, B, C values explicitly, as in
estimatedPolymodel.A = ARCoeff
Or, call the IDPOLY constructor with A, B, C polynomials initialized to the desired values.
A = [1 .1]
B = [0 0 4 1]
C = [1 .3]
m = idpoly(A,B,C,'Ts',1)
% refine model's initial parameter values
m2 = armax(data, m)
% but I wanted to update only A and B but not C!
m.Structure.C.Free = false;
m3 = armax(data, m)
2 Kommentare
Rajiv Singh
am 10 Aug. 2020
Look under the "structure" property. In addition to "Free", it also offers "Minimum" and "Maximum" specifications that you can set for individual coefficients.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Analyze Data finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!