All possible combinations of 2 vectors.

1 Ansicht (letzte 30 Tage)
Artyom
Artyom am 22 Nov. 2012
Hi everyone.
I have one vector and one number. For example [1 3 5] and 0.
How do I generate all possible combinations? Like this:
0 3 5
1 0 5
1 3 0
0 0 5
0 3 0
1 0 0
0 0 0
  2 Kommentare
Matt Fig
Matt Fig am 22 Nov. 2012
Why is the last row all zeros? It looks like the rule is: take at least one element from each vector, with repetition allowed only for the shorter vector. But then the last row breaks this. So what is the rule?
Artyom
Artyom am 22 Nov. 2012
The rule is:
1) we have an n - dimensional vector.
2) replace one number with zero and find all combinations
3) replace two numbers with zero and find all combinations
4) ...
5) replace n-1 number with zero and find all combinations
6) replace n number with zero

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Matt Fig
Matt Fig am 22 Nov. 2012
Bearbeitet: Matt Fig am 23 Nov. 2012
Here is a solution:
function H = mycomb(V)
% Help
L = length(V);
H = cell(1,L);
for ii = 1:L-1
C = nchoosek(1:L,L-ii);
R = cumsum(ones(size(C)));
M = max(R(:,1));
H{ii} = zeros(M,L);
H{ii}(R+(C-1)*M) = V(C);
end
H{L} = zeros(1,L);
H = vertcat(H{:});
Now try it out from the command line:
>> mycomb([4 5 6])
ans =
4 5 0
4 0 6
0 5 6
4 0 0
0 5 0
0 0 6
0 0 0
>> mycomb([4 5 6 7])
ans =
4 5 6 0
4 5 0 7
4 0 6 7
0 5 6 7
4 5 0 0
4 0 6 0
4 0 0 7
0 5 6 0
0 5 0 7
0 0 6 7
4 0 0 0
0 5 0 0
0 0 6 0
0 0 0 7
0 0 0 0

Weitere Antworten (3)

Andrei Bobrov
Andrei Bobrov am 22 Nov. 2012
Bearbeitet: Andrei Bobrov am 22 Nov. 2012
variant
t = [1 3 5];
ii = perms([t, zeros(size(t))]);
out = unique(sort(t(:,1:numel(t)),2),'rows');
or
t = [1 3 5];
out = [];
n = numel(t);
for jj = 1:n
k = nchoosek(t,n - jj);
out = [out;[zeros(size(k,1),jj),k]];
end
or
k = ones(1,numel(t)) * 2.^(numel(t)-1:-1:0)';
out = bsxfun(@times,t,dec2bin(0:k - 1,numel(t))-'0');

Azzi Abdelmalek
Azzi Abdelmalek am 22 Nov. 2012
Bearbeitet: Azzi Abdelmalek am 23 Nov. 2012
save this function
function y=arrangement(v,n)
m=length(v);
y=zeros(m^n,n);
for k = 1:n
y(:,k) = repmat(reshape(repmat(v,m^(n-k),1),m*m^(n-k),1),m^(k-1),1);
end
then type
x=arrangement([1 3 5 0],3)
out=x(~all(x,2),:)
If you don't need repetition add
s=arrayfun(@(t) sort(out(t,:)),(1:size(out,1))','un',0)
out1=unique(cell2mat(s),'rows')

Matt J
Matt J am 23 Nov. 2012
Bearbeitet: Matt J am 23 Nov. 2012
t=[1 3 5];
n=length(t);
result = bsxfun(@times, [1,3,5], dec2bin(2^n-1:-1:0)-'0')

Kategorien

Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by