Can this code run faster?

19 Ansichten (letzte 30 Tage)
Max Ellens
Max Ellens am 9 Jun. 2020
Beantwortet: Nam Vu am 9 Jun. 2020
I currently have a code, that I have to run a 100+ times, with 100+ different seeds. But only one round already takes 72 seconds, and my fellow students who run the code in R say their code runs a lot faster. particularly the fitlm part of part 5 of the code takes up some time. Does anyone know how to make the following code faster or more effective?
tic
seed = 2;
1 %%
rng('default');
rng(seed);
x = zeros(4000,1);
sz = size(x);
Income = lognrnd(3.60,0.5, sz);
v = normrnd(0,1,sz);
Beta = zeros(4000,1);
B0 = -2;
B1 = 1;
for i = 1:4000
Beta(i) = B0 + B1*(Income(i)/100000) + v(i);
end
2 %%
rng(seed);
HouseholdSize = zeros(4000,1);
sz = size(HouseholdSize);
for i = 1:800
x = randi([1 2]);
HouseholdSize(i) = x;
end
for i = 801:1600
x = randi([1 3]);
HouseholdSize(i) = x;
end
for i = 1601:2400
x = randi([1 4]);
HouseholdSize(i) = x;
end
for i = 2401:3200
x = randi([1 5]);
HouseholdSize(i) = x;
end
for i = 3201:4000
x = randi([1 6]);
HouseholdSize(i) = x;
end
HouseholdSize = HouseholdSize(randperm(length(HouseholdSize)));
u = normrnd(0,0.1,sz);
Rho = zeros(4000,1);
P0 = 0.7;
P1 = 0.015;
for i = 1:4000
Rho(i) = P0 + P1*HouseholdSize(i) + u(i);
end
3 %%
rng(seed)
X = 0.5 + (1).*rand(4000,24);
q = zeros(4000,1);
sizeq = size(q);
Alpha = normrnd(10,0.1,sizeq);
y = zeros(4000,24);
y(:,1) = 10;
sizey = size(y);
epsilon = normrnd(0,1,sizey);
for hh = 1:4000
for time = 2:24
y(hh,time) = Alpha(hh) + Beta(hh)*X(hh,time) + Rho(hh)*y(hh,time-1) + epsilon(hh,time);
end
end
4 %%
SamenTabel = zeros(92000,5);
for i = 1:4000
for j = 1:23
SamenTabel((i-1)*23 + j,1) = j + 1;
SamenTabel((i-1)*23 + j,2) = i;
SamenTabel((i-1)*23 + j,3) = y(i, j + 1);
SamenTabel((i-1)*23 + j,4) = X(i, j);
SamenTabel((i-1)*23 + j,5) = y(i, j);
end
end
SamenTabel = array2table(SamenTabel);
SamenTabel.Properties.VariableNames = {'Time' 'HH' 'Buys' 'Price' 'LagBuys'};
5 %%
tic
Amount1 = unique(SamenTabel(:,2));
Amount = height(Amount1);
Dataset1 = table2array(SamenTabel);
Dataset = cell(Amount,3);
SimuAlpha = zeros(4000,2);
SimuBeta = zeros(4000,2);
SimuRho = zeros(4000,2);
for i = 1:1:Amount
[Rows, ~] = find(Dataset1(:,2) == i);
DatasetUSE = SamenTabel(Rows,:);
Regression = fitlm(DatasetUSE,...
'Buys ~ 1 + Price + LagBuys');
Dataset(i,1) = {Regression};
T1 = table2array(Dataset{i, 1}.Coefficients(1,1));
T11 = table2array(Dataset{i, 1}.Coefficients(1,2));
T2 = table2array(Dataset{i, 1}.Coefficients(2,1));
T22 = table2array(Dataset{i, 1}.Coefficients(2,2));
T3 = table2array(Dataset{i, 1}.Coefficients(3,1));
T33 = table2array(Dataset{i, 1}.Coefficients(3,2));
SimuAlpha(i,1) = T1;
SimuAlpha(i,2) = T11;
SimuBeta(i,1) = T2;
SimuBeta(i,2) = T22;
SimuRho(i,1) = T3;
SimuRho(i,2) = T33;
end
toc
6 %%
Laag2 = zeros(4000,2);
Laag3 = zeros(4000,2);
for i = 1:4000
Laag2(i,1) = SimuBeta(i,1);
Laag2(i,2) = Income(i,1);
Laag3(i,1) = SimuRho(i,1);
Laag3(i,2) = HouseholdSize(i,1);
end
Laag2 = array2table(Laag2);
Laag3 = array2table(Laag3);
Laag2.Properties.VariableNames = {'Beta' 'Income'};
Laag3.Properties.VariableNames = {'Rho' 'Size'};
7 %%
BetaEstimate = fitlm(Laag2,...
'Beta ~ 1 + Income');
RhoEstimate = fitlm(Laag3,...
'Rho ~ 1 + Size');
%%
toc

Antworten (2)

Michael W
Michael W am 9 Jun. 2020
Use the MATLAB profiler to find out where your code is slow.

Nam Vu
Nam Vu am 9 Jun. 2020
I've run #2, I think you could review line by line to do the code-refactoring. For example:
for i = 1:800
x = randi([1 2]);
HouseholdSize(i) = x;
end
could be :
for i = 1:800
HouseholdSize(i) = randi([1 2]);
end
less 1 assignment command => more faster.
For thousands of runs, I think we have another way to create the HouseholdSize:
HouseholdSize = [randi([1 2], [800,1]) randi([1 3], [800,1]) randi([1 4], [800,1]) randi([1 5], [800,1]) randi([1 6], [800,1])];
HouseholdSize = HouseholdSize(randperm(4000));
You could use the vector-operator to do the calculate Rho:
u = normrnd(0,0.1,[1,4000]);
P0 = 0.7;
P1 = 0.015;
Rho = P0 + P1*HouseholdSize +u
Regards,

Kategorien

Mehr zu Analysis of Variance and Covariance finden Sie in Help Center und File Exchange

Produkte


Version

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by