How to solve a second order non-homogeneous equation using Euler's approximation
    3 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Gibby Sauce
 am 7 Jun. 2020
  
    
    
    
    
    Bearbeitet: Ameer Hamza
      
      
 am 7 Jun. 2020
            I'm able to approximate a the following homogenous differential equation n''+n'+2n=0, n(0)=5, n'(0)=1 using:
%Defining functions
first=@(n,x,t) x;
second=@(n,x,t) -x-2*n;
%step size
T=.05;
%max t value
tf=10;
%Initial conditions
t(1)=0;
n(1)=5;
n2(1)=1;
%euler approximation
for i=1:(tf/T)
    t(i+1)=t(i)+T;
    n(i+1)=n(i)+T*first(n(i),n2(i)+t(i));
    n2(i+1)=n2(i)+T*second(n(i),n2(i)+t(i));
end
plot(t,n)
However, how should I edit the code above to solve a non-homogenous variation n''+n'+2n=cos(t), with the same initial conditions? Thank you.
0 Kommentare
Akzeptierte Antwort
  Ameer Hamza
      
      
 am 7 Jun. 2020
        
      Bearbeitet: Ameer Hamza
      
      
 am 7 Jun. 2020
  
      First, there is a mistake in your equation of Euler method
n(i+1)=n(i)+T*first(n(i),n2(i),t(i)); % there should be a comma between n2(i) and t(i)
n2(i+1)=n2(i)+T*second(n(i),n2(i),t(i)); % there should be a comma between n2(i) and t(i)
You can use cos(t) as input by changing the function 'second'
second=@(n,x,t) -x-2*n+cos(t);
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

