How to solve a second order non-homogeneous equation using Euler's approximation

3 Ansichten (letzte 30 Tage)
I'm able to approximate a the following homogenous differential equation n''+n'+2n=0, n(0)=5, n'(0)=1 using:
%Defining functions
first=@(n,x,t) x;
second=@(n,x,t) -x-2*n;
%step size
T=.05;
%max t value
tf=10;
%Initial conditions
t(1)=0;
n(1)=5;
n2(1)=1;
%euler approximation
for i=1:(tf/T)
t(i+1)=t(i)+T;
n(i+1)=n(i)+T*first(n(i),n2(i)+t(i));
n2(i+1)=n2(i)+T*second(n(i),n2(i)+t(i));
end
plot(t,n)
However, how should I edit the code above to solve a non-homogenous variation n''+n'+2n=cos(t), with the same initial conditions? Thank you.

Akzeptierte Antwort

Ameer Hamza
Ameer Hamza am 7 Jun. 2020
Bearbeitet: Ameer Hamza am 7 Jun. 2020
First, there is a mistake in your equation of Euler method
n(i+1)=n(i)+T*first(n(i),n2(i),t(i)); % there should be a comma between n2(i) and t(i)
n2(i+1)=n2(i)+T*second(n(i),n2(i),t(i)); % there should be a comma between n2(i) and t(i)
You can use cos(t) as input by changing the function 'second'
second=@(n,x,t) -x-2*n+cos(t);

Weitere Antworten (0)

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Produkte


Version

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by