Phase portrait of a 2 dimensional system that converges to a unit circle

4 Ansichten (letzte 30 Tage)
The dynamical system contains two ODES:
dxdt=(1-(x.^2+y.^2)).*x-3.*y.*(x.^2+y.^2);
dydt=(1-(x.^2+y.^2)).*y+3.*x.*(x.^2+y.^2);
where :
x(t)=cos(3*t);
y(t)=sin(3*t);
This system has a unstable solution: x(t)=y(t)=0.
I want to produce a phase portrait of this system which will look like this:
Please help me. I do not know what code to use in order to produce this plot. The aatachment is the question. Thank you for the help!!!!
  3 Kommentare
Penglin Cai
Penglin Cai am 6 Jun. 2020
Yes, the picture below is the original question, l really do not know what command to use in order to plot this graph. Thank you for your help.
Chen
Chen am 21 Okt. 2024
Hi, I've been studying coupled oscillators, can you tell me which book this is from?

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Ameer Hamza
Ameer Hamza am 6 Jun. 2020
Bearbeitet: Ameer Hamza am 6 Jun. 2020
try this
dx_dt = @(x,y) (1-(x.^2+y.^2)).*x-3.*y.*(x.^2+y.^2);
dy_dt = @(x,y) (1-(x.^2+y.^2)).*y+3.*x.*(x.^2+y.^2);
[x, y] = meshgrid(-2:0.02:2, -2:0.02:2);
dx = dx_dt(x, y);
dy = dy_dt(x, y);
streamslice(x, y, dx, dy);
axis tight
axis equal
hold on
fplot(@(t) cos(3*t), @(t) sin(3*t), [0, 2*pi/3], 'Color', 'r', 'LineWidth', 2)

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Produkte


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by