How can I make patternsearch optimize using additional values?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Kei Manabe
am 4 Jun. 2020
Kommentiert: Kei Manabe
am 3 Jul. 2020
I am trying to optimize the Page test parameters. In the last two lines, as the cost function of patternsearch, "RSS" is calculated. Basically, I would like to find the parameters to minimize RSS. However, I would like to make patternsearch optimize considering other values: n_1, n_19, n_27, n_29, n_47. These values should be larger than 30. Is there any way or idea to have additional constraints for patternsearch? Thank you so much in advance.
rand1 = rand(1)*1000; rand2 = rand(1)*1000; rand3 = rand(1); rand4 = rand(1)/100;
param0 = [round(max(rand1,rand2)), round(min(rand1,rand2)), round(rand3, 2), round(rand4, 5)];
options = optimoptions('patternsearch', 'PlotFcn', 'psplotbestx', 'MeshTolerance', 1, 'ScaleMesh', false, 'InitialMeshSize',10);
A = [];
b = [];
Aeq = [];
beq = [];
nlcon = [];
lb = [1 1 0.1 1/500000];
ub = [100000 100000 10 1/25000];
fun = @do;
[param, RSS, exitflag, ~] = patternsearch(fun, param0, A, b, Aeq, beq, lb, ub, nlcon, options);
function RSS = do(param)
load y_highpass_TK_short y_highpass_TK_short
n_1_groundtruth = 46;
n_19_groundtruth = 43;
n_27_groundtruth = 38;
n_29_groundtruth = 35;
n_47_groundtruth = 40;
T0 = param(1);
T1 = param(2);
T2 = param(3);
alpha = param(4);
[Vn_1, ~, loc_maxima_1, N_1] = doPagetest_loop(y_highpass_TK_short{1}, T0, T1, T2, alpha);
n_1 = length(Vn_1(loc_maxima_1==1));
[Vn_19, ~, loc_maxima_19, N_19] = doPagetest_loop(y_highpass_TK_short{2}, T0, T1, T2, alpha);
n_19 = length(Vn_19(loc_maxima_19==1));
[Vn_27, ~, loc_maxima_27, N_27] = doPagetest_loop(y_highpass_TK_short{3}, T0, T1, T2, alpha);
n_27 = length(Vn_27(loc_maxima_27==1));
[Vn_29, ~, loc_maxima_29, N_29] = doPagetest_loop(y_highpass_TK_short{4}, T0, T1, T2, alpha);
n_29 = length(Vn_29(loc_maxima_29==1));
[Vn_47, ~, loc_maxima_47, N_47] = doPagetest_loop(y_highpass_TK_short{5}, T0, T1, T2, alpha);
n_47 = length(Vn_47(loc_maxima_47==1));
RSS = sqrt((n_1-n_1_groundtruth)^2 + (n_19-n_19_groundtruth)^2 + (n_27-n_27_groundtruth)^2 ...
+ (n_29-n_29_groundtruth)^2 + (n_47-n_47_groundtruth)^2);
0 Kommentare
Akzeptierte Antwort
Alan Weiss
am 5 Jun. 2020
Before I get to your specific question, allow me an observation: it is very inefficient to call a load statement in an objective function. I think that you will have much better luck passing in fixed data using a parameterization technique.
Now for your specific question. If you also want to optimize over the variables n_1, n_19, n_27, n_29, and n_47, then I suggest that you make these variables part of your optimization. Append them to your params vector as follows:
function RSS = do(params,extradata) % extradata are the values in y_highpass_TK_short y_highpass_TK_short
T0 = params(1);
T1 = params(2);
T2 = params(3);
alpha = params(4);
n_1 = params(5);
n_19 = params(6);
n_27 = params(7);
n_29 = params(8);
n_47 = params(9);
% Your code here
end
To keep params(5:9) above 30 during the optimization, set lower bounds:
lb = 30*ones(1,9);
lb(1:4) = [1 1 0.1 1/500000];
Extend the ub vector to be of length 9 as well.
Alan Weiss
MATLAB mathematical toolbox documentation
8 Kommentare
Alan Weiss
am 2 Jul. 2020
Your understanding is not quite right. Solvers attempt to find a feasible solution, not first a solution and then feasibility. In fact, you might want to check whether any feasible solution exists. Try the suggestions in Converged to an Infeasible Point.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!