calculate empirical distribution function and interpolation
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a data of
column 1 = temperature at 55F, 57F, 60F,...
column 2 = sales of sunglasses at these temperatures
I want to calculate the empirical distribution of sales of sunglasses over time and then use this empirical distribution to estimate the sales of sunglasses when the temperature is 56.6F, etc.
I tried to use polyfit but told that polynomial is badly conditioned.
0 Kommentare
Antworten (1)
Jeff Miller
am 3 Jun. 2020
You want to use the regress function, something like this:
X = [ones(size(temp) temp)]; % temp is a column vector of temperatures
b = regress(sales,X); % sales is a column vector of sales
SalesAt56pt6 = b(1) + b(2)*56.6;
empirical distribution functions and polyfit are both used in different types of situations than you are describing.
hth
3 Kommentare
Jeff Miller
am 4 Jun. 2020
You can add some nonlinear terms like this:
X = [ones(size(temp)) temp temp.^2 temp.^3]; % temp is a column vector of temperatures
b = regress(sales,X); % sales is a column vector of sales
SalesAt56pt6 = b(1) + b(2)*56.6 + b(3)*56.6^2 + b(4)*56.6^3;
This technique will fit a polynomial of any order you want
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!