Normalized to unity by summation

1 Ansicht (letzte 30 Tage)
AVM
AVM am 1 Jun. 2020
Bearbeitet: Walter Roberson am 1 Jun. 2020
I have the following code where I am trying to get unity after performing a summation. But it is not giving me unity using '' symsum''. Is there any alteranative way to execute the summation with a complicated expression. Pl somebody help me to solve that. Here my code is given below. Although theoretically it is giving ''one'' for n ranging from 1 to inf.
clc;
syms n
x=1.0;
y=0.5;
g=0.2;
l=0.1;
om=sqrt(((x).^2)-(4.*(g.^2)));
mu=sqrt((x+om)./(2.*om));
nu=((x-om)./(2.*g)).*mu;
eta=(((l)./((2.*g)+x)).*(1+((x-om)./(2.*g)))).*mu;
%% n dependency start
En=((n+(1./2)).*om)-(x./2)-(((l).^2)./((2.*g)+x));
Enn=((n-(1./2)).*om)-(x./2)-(((l).^2)./((2.*g)+x));
Dn=(y./2).*(exp(-2.*((eta).^(2)))).*(laguerreL(n,(4.*((eta).^2))));
Dnn=(y./2).*(exp(-2.*((eta).^(2)))).*(laguerreL((n-1),(4.*((eta).^2))));
Em=En - Dn;
Ep=Enn + Dnn;
eps=(Ep-Em)./2;
Deln=(eta.*y./sqrt(n)).*exp(-2.*(eta.^2)).*laguerreL((n-1),1,(4*(eta^2)));
xn=sqrt(((eps).^2)+((Deln).^(2)));
zetap=sqrt(((xn.^2)+(eps.^2))./(2.*xn));
zetam=sqrt(((xn.^2)-(eps.^2))./(2.*xn));
z= 1i.*(mu-nu).*eta./sqrt(2.*mu.*nu);
a1=(zetap./sqrt(factorial(n-1))).*((- nu./(2.*mu)).^(-1./2)).* hermiteH(n-1, z);
b1=(Deln./abs(Deln)).*(zetam./sqrt(factorial(n))).* hermiteH(n, z);
a2=(zetam./sqrt(factorial(n-1))).*((-nu./(2.*mu)).^(-1./2)).* hermiteH(n-1, z);
b2= (Deln./abs(Deln)).*(zetap./sqrt(factorial(n))).*hermiteH(n, z);
c0= -(1./sqrt(2.*mu)).*exp(-((eta.^2)./2)+ ((nu.*(eta).^2)./(2.*mu)));
cp= -c0.*((-nu./(2.*mu)).^(n./2)).*(a1 - b1);
cm= -c0.*((-nu./(2.*mu)).^(n./2)).*(a2 + b2);
c=((abs(cp)).^2) + ((abs(cm)).^2);
c1=(abs(c0)).^2;
out= ((abs(c0)).^2) + symsum(c,n,1,100);
vpa(out,5)
% Actually I need to get c1 + sum_{n=1}^{inf} c = 1. Is it possible to get by using symsum??

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 1 Jun. 2020
Bearbeitet: Walter Roberson am 1 Jun. 2020
You can use
out= ((abs(c0)).^2) + symsum(c,n,1,inf);
and that will be faster than for upper bound 100. The symsum() will stay unevaluated, and will be converted into numeric form when you vpa().
Alternately you could use
out= ((abs(c0)).^2) + sum(subs(c,n,1:100));
This will be a bit slow. I would suggest instead
guard_digits = 10;
out= ((abs(c0)).^2) + sum(vpa(subs(c,n,1:100), guard_digits);
Any of these methods will give the same result to within round-off error -- and none of them will give 1.0 for the final result, not even the one with symsum() to infinity. I recommend that you re-check the formulaes.
  1 Kommentar
AVM
AVM am 1 Jun. 2020
@walter: Thanks for your help. Yes, I did a mistake in one of the expression. Now it exactly 'one'

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by