NN training process?

1 Ansicht (letzte 30 Tage)
Raza Ali
Raza Ali am 18 Mai 2020
Kommentiert: Raza Ali am 22 Mai 2020
why mini batch accuracy (value) graph of training is goes down during training process?

Akzeptierte Antwort

Shishir Singhal
Shishir Singhal am 22 Mai 2020
Hi,
Mini batch accuracy should likely to increase with no. of epochs.
But for your case, there can be of multiple reasons behind this:
  • Mini-batch size
  • Learning rate
  • cost function.
  • Network Architechture
  • Quality of data and lot more.
It would be better if you provide more information about the NN model you are using.
If your case is similar like that.
  1 Kommentar
Raza Ali
Raza Ali am 22 Mai 2020
Thank you for your reply.
plz see the detail below
Network = [
imageInputLayer([256 256 3],"Name","imageinput")
convolution2dLayer([3 3],32,"Name","conv_1","BiasLearnRateFactor",2,"Padding","same")
reluLayer("Name","relu_1")
batchNormalizationLayer("Name","batchnorm")
convolution2dLayer([3 3],64,"Name","conv_2","BiasLearnRateFactor",2,"Padding","same")
reluLayer("Name","relu_2")
transposedConv2dLayer([3 3],2,"Name","transposed-conv","Cropping","same")
softmaxLayer("Name","softmax")
dicePixelClassificationLayer("Name","dice-pixel-class")];
options = trainingOptions('sgdm', ...
'LearnRateSchedule','piecewise',...
'LearnRateDropPeriod',10,...
'LearnRateDropFactor',0.3,...
'Momentum',0.9, ...
'InitialLearnRate',1e-3, ...
'L2Regularization',0.005, ...
'MaxEpochs',30, ...
'MiniBatchSize',2, ...
'Shuffle','every-epoch', ...
'VerboseFrequency',2,...
'Plots','training-progress');

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by