Replacing for loop with matrix math to increase computational efficiency.

1 Ansicht (letzte 30 Tage)
I am using the following code to compute the Sx, Su, Sw and Sd matrices. But I have found out them to be very computationally expensive and also I understand there is a better way to do this. Can anyone please suggest how these computations can be done more efficiently? I am also considering converting these matrices to sparce matrices after assignment for the further calculations.
N = pred_horizon/Ts; % N = 500
Sx = zeros(8*(N+1),8);
Su = zeros(8*(N+1),8*(N));
Sw = zeros(8*(N+1),8*(N));
Sd = zeros(8*(N+1),1);
for i=1:(length(Sx)-7)
Sx(i:i+7,:) = power(Ad,(i-1));
end
for i=2:size(Su,1)-7
for j=1:min((i-1),size(Su,2)-7)
Su(i:i+7,j:j+7) = power(Ad,(i-j-1))*Bd;
end
end
for i=2:size(Sw,1)-7
for j=1:min((i-1),size(Sw,2)-7)
Su(i:i+7,j:j+7) = power(Ad,(i-j-1))*Ed;
end
end
for i=2:length(Sd)-7
Sd(i:i+7,:) = power(Ad,i-2)*Dd;
end

Antworten (1)

darova
darova am 17 Mai 2020
You can increase for loop step
You are overwriting same values all the time. THere is no need of it

Produkte


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by