Solving coupled 2nd order differential equations

14 Ansichten (letzte 30 Tage)
Joe Hasrouny
Joe Hasrouny am 14 Mai 2020
Kommentiert: Star Strider am 20 Jul. 2022
Hello,
I am trying to solve the following 2nd order coupled diffrential equations:
So i started with the following code - I don't know if it's right at first place and i don't know how to continue (using ode45).
I want to plot three things : plot(x,y) , plot(t,y) , plot(t,x).
Any help will be appreciated .
syms O a g L x(t) y(t) t Y ;
dx = diff(x);
d2x = diff(x,2);
dy = diff(y);
d2y = diff(y,2);
Eq1 = d2x == 2*O*sin(a)*dy - (g/L)*x(t);
Eq2 = d2y == -2*O*sin(a)*dx - (g/L)*y(t);
[VF,Subs] = odeToVectorField(Eq1, Eq2)
ftotal = matlabFunction(VF,'Vars',{O,a,g,L,Y});
O=rand;
a=rand;
g=9.81;
L=rand;

Akzeptierte Antwort

Star Strider
Star Strider am 14 Mai 2020
Try this:
syms O a g L x(t) y(t) t Y ;
dx = diff(x);
d2x = diff(x,2);
dy = diff(y);
d2y = diff(y,2);
Eq1 = d2x == 2*O*sin(a)*dy - (g/L)*x(t);
Eq2 = d2y == -2*O*sin(a)*dx - (g/L)*y(t);
[VF,Subs] = odeToVectorField(Eq1, Eq2)
ftotal = matlabFunction(VF,'Vars',{t,Y,O,a,g,L});
O=rand;
a=rand;
g=9.81;
L=rand;
tspan = [0 25]; % Choose Appropriate Simulation Time
ic = [0 1 0 1]; % Choose Appropriate Initial Conditions
[t,y] = ode45(@(t,y) ftotal(t,y,O,a,g,L), tspan, ic);
figure
plot(t, y)
grid
legend(string(Subs))
The initial conditions and parameters need to be appropriate for the simulation you want to do. The simulation time can be anything appropriate.
  4 Kommentare
Haseeb Hashim
Haseeb Hashim am 20 Jul. 2022
Hi I wanted to ask 1 thing the solution vector y contains solution in what order i-e the x displacement first or y displacement first along with the velocities please respond quick if you can
Star Strider
Star Strider am 20 Jul. 2022
@Haseeb Hashim — The first column of the integrated result coresponds to the first differential equation in the original system, the second column to the second differential equation, and so for any others.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by