how to speed up a nonlinear convex problem if solved using fmincon

1 Ansicht (letzte 30 Tage)
mohamed Faraj
mohamed Faraj am 14 Mai 2020
Kommentiert: Piotr Balik am 5 Apr. 2023
I have a nonlinear convex problem with a large number of variables (100*n_samples+66). For example, if n_samples=50, I have 5066 variables. I have a set of linear constraints and a set of nonlinear constraints. The nonlinear constraints are convex and the objective function is a linear function that has 66 variables. To get a solution, the optimizer terminated because it reached the maximum number of function evaluations which I set at 90000 (it took 13 hours for the optimizer to stop). This is a smaple of the iteration when n_samples=1, i.e., we have 166 variables. Any idea how to speed up the optimizer (i have matlab 2013a ).
First-order Norm of
Iter F-count f(x) Feasibility optimality step
871 149095 5.800103e+03 1.776e-15 1.469e+00 5.745e-01
872 149269 5.798809e+03 1.776e-15 1.444e+00 5.761e-01
873 149443 5.797519e+03 1.776e-15 1.444e+00 5.774e-01
874 149617 5.796233e+03 1.849e-15 1.444e+00 5.785e-01
875 149791 5.794949e+03 4.441e-16 1.444e+00 5.793e-01
876 149965 5.793668e+03 4.031e-15 1.444e+00 5.799e-01
877 150139 5.792388e+03 3.553e-15 1.444e+00 5.802e-01
878 150311 5.789831e+03 1.776e-15 1.444e+00 1.161e+00
879 150483 5.787275e+03 6.314e-16 1.444e+00 1.160e+00
880 150655 5.782154e+03 1.776e-15 1.444e+00 2.315e+00
881 150827 5.776978e+03 1.776e-15 1.444e+00 2.297e+00
882 151005 5.772331e+03 1.776e-15 1.316e+00 1.987e+00
883 151181 5.769920e+03 1.776e-15 1.136e+00 9.909e-01
884 151357 5.768691e+03 2.429e-15 1.053e+00 4.984e-01
885 151531 5.767452e+03 2.984e-15 9.999e-01 5.006e-01
886 151705 5.766207e+03 1.776e-15 9.999e-01 5.029e-01
887 151879 5.764957e+03 1.776e-15 9.999e-01 5.051e-01
888 152051 5.763706e+03 1.776e-15 9.999e-01 5.071e-01
889 152223 5.762454e+03 1.776e-15 9.999e-01 5.090e-01
890 152395 5.761203e+03 3.372e-15 9.999e-01 5.108e-01
891 152567 5.759954e+03 1.776e-15 9.999e-01 5.125e-01
892 152739 5.758708e+03 1.776e-15 9.999e-01 5.140e-01
893 152911 5.757463e+03 3.497e-15 9.999e-01 5.155e-01
894 153085 5.756221e+03 1.776e-15 9.999e-01 5.168e-01
895 153259 5.754981e+03 8.812e-16 9.999e-01 5.179e-01
896 153433 5.753743e+03 1.776e-15 9.999e-01 5.189e-01
  1 Kommentar
Piotr Balik
Piotr Balik am 5 Apr. 2023
Bumping the question, I have similar problem - convexity assumption should give a great boost

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Linear Programming and Mixed-Integer Linear Programming finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by