How to activate symbolic math toolbox
239 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Symbolic math toolbox
0 Kommentare
Antworten (6)
Ameer Hamza
am 11 Mai 2020
You can go to this link: https://www.mathworks.com/mwaccount/ and check the toolbox associated with your license.
If you have the Symbolic toolbox, then you can download the MATLAB install it with the symbolic toolbox. If you already have MATLAB installed, then you can click you can click Add-ons and search for the symbolic toolbox and install it.
0 Kommentare
Vinitha
am 5 Okt. 2024
3 Kommentare
Vinitha
am 5 Okt. 2024
Bearbeitet: Walter Roberson
am 18 Dez. 2025 um 20:42
% Clear workspace and command window
clear; clc;
T==2; %Final time
% Define symbolic variables
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v) - (exp(-t) + v + int(v^2, t, 0, t));
% Specify the boundary condition
cond = v(0) == 0;
cond = v(T) == 1;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the exact solution
disp('The exact solution is:');
disp(sol);
Walter Roberson
am 5 Okt. 2024
I do not understand how these solutions solve the problem of activating the Symbolic Toolbox ?
Vinitha
am 5 Okt. 2024
Bearbeitet: Walter Roberson
am 18 Dez. 2025 um 20:42
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol);
1 Kommentar
Vinitha
am 5 Okt. 2024
Verschoben: Walter Roberson
am 5 Okt. 2024
% Clear workspace and command window
clear; clc;
% Define the ODE as a function handle
ode = @(t, v) [-0.5 * v(1) + sec(t)]; % v(1) is v(t)
% Define boundary conditions
bc = @(va, vb) [va(1); vb(1) - 1]; % v(0) = 0 and v(T) = 1
% Define the final time
T = 2;
% Initial guess for v at t = 0 and t = T
initialGuess = [0; 1]; % v(0) = 0 and guess v(T) = 1
% Create a mesh for the solution
tspan = linspace(0, T, 100);
% Solve the boundary value problem
sol = bvp4c(ode, bc, bvpinit(tspan, initialGuess));
% Extract the solution
t = sol.x; % time values
v = sol.y(1, :); % v(t) values
% Display the results
disp('The solution at final time T = 2 is:');
disp(v(end));
% Plot the results
figure;
plot(t, v, 'LineWidth', 2);
xlabel('Time (t)');
ylabel('v(t)');
title('Exact Solution of the ODE');
grid on;
Vinitha
am 5 Okt. 2024
Bearbeitet: Walter Roberson
am 5 Okt. 2024
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol);
0 Kommentare
Vinitha
am 5 Okt. 2024
Bearbeitet: Walter Roberson
am 5 Okt. 2024
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the solution
disp('The exact solution is:');
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol)
0 Kommentare
Vinitha
am 5 Okt. 2024
Bearbeitet: Walter Roberson
am 18 Dez. 2025 um 20:43
% Clear workspace and command window
clear; clc;
T==2; %Final time
% Define symbolic variables
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v) - (exp(-t) + v + int(v^2, t, 0, t));
% Specify the boundary condition
cond = v(0) == 0;
cond = v(T) == 1;
% Solve the ODE
sol = dsolve(ode, cond);
% Display the exact solution
disp('The exact solution is:');
disp(sol);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!