How to activate symbolic math toolbox

382 Ansichten (letzte 30 Tage)
Ajit More
Ajit More am 11 Mai 2020
Kommentiert: Walter Roberson am 5 Okt. 2024

Symbolic math toolbox

Antworten (6)

Ameer Hamza
Ameer Hamza am 11 Mai 2020
You can go to this link: https://www.mathworks.com/mwaccount/ and check the toolbox associated with your license.
If you have the Symbolic toolbox, then you can download the MATLAB install it with the symbolic toolbox. If you already have MATLAB installed, then you can click you can click Add-ons and search for the symbolic toolbox and install it.

Vinitha
Vinitha am 5 Okt. 2024
dy/dt=y^{2}
  3 Kommentare
Vinitha
Vinitha am 5 Okt. 2024
Verschoben: Walter Roberson am 5 Okt. 2024

% Clear workspace and command window
clear; clc;
T==2; %Final time

% Define symbolic variables
syms v(t)

% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v) - (exp(-t) + v + int(v^2, t, 0, t));

% Specify the boundary condition
cond = v(0) == 0;
cond = v(T) == 1;

% Solve the ODE
sol = dsolve(ode, cond);

% Display the exact solution
disp('The exact solution is:');
disp(sol);

Walter Roberson
Walter Roberson am 5 Okt. 2024
I do not understand how these solutions solve the problem of activating the Symbolic Toolbox ?

Melden Sie sich an, um zu kommentieren.


Vinitha
Vinitha am 5 Okt. 2024

% Ensure the Symbolic Math Toolbox is available
syms v(t)

% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);

% Specify initial condition
cond = v(0) == 0;

% Solve the ODE
sol = dsolve(ode, cond);

% Display the solution
disp('The exact solution is:');
disp(sol);
% Ensure the Symbolic Math Toolbox is available
syms v(t)

% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);

% Specify initial condition
cond = v(0) == 0;

% Solve the ODE
sol = dsolve(ode, cond);

% Display the solution
disp('The exact solution is:');
disp(sol);

% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol);

  1 Kommentar
Vinitha
Vinitha am 5 Okt. 2024
Verschoben: Walter Roberson am 5 Okt. 2024
% Clear workspace and command window
clear; clc;
% Define the ODE as a function handle
ode = @(t, v) [-0.5 * v(1) + sec(t)]; % v(1) is v(t)
% Define boundary conditions
bc = @(va, vb) [va(1); vb(1) - 1]; % v(0) = 0 and v(T) = 1
% Define the final time
T = 2;
% Initial guess for v at t = 0 and t = T
initialGuess = [0; 1]; % v(0) = 0 and guess v(T) = 1
% Create a mesh for the solution
tspan = linspace(0, T, 100);
% Solve the boundary value problem
sol = bvp4c(ode, bc, bvpinit(tspan, initialGuess));
Error using bvparguments (line 99)
Error in calling BVP4C(ODEFUN,BCFUN,SOLINIT):
The derivative function ODEFUN should return a column vector of length 2.

Error in bvp4c (line 119)
bvparguments(solver_name,ode,bc,solinit,options,varargin);
% Extract the solution
t = sol.x; % time values
v = sol.y(1, :); % v(t) values
% Display the results
disp('The solution at final time T = 2 is:');
disp(v(end));
% Plot the results
figure;
plot(t, v, 'LineWidth', 2);
xlabel('Time (t)');
ylabel('v(t)');
title('Exact Solution of the ODE');
grid on;

Melden Sie sich an, um zu kommentieren.


Vinitha
Vinitha am 5 Okt. 2024
Bearbeitet: Walter Roberson am 5 Okt. 2024
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
Warning: Unable to find symbolic solution.
% Display the solution
disp('The exact solution is:');
The exact solution is:
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol);

Vinitha
Vinitha am 5 Okt. 2024
Bearbeitet: Walter Roberson am 5 Okt. 2024
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
Warning: Unable to find symbolic solution.
% Display the solution
disp('The exact solution is:');
The exact solution is:
disp(sol);
% Ensure the Symbolic Math Toolbox is available
syms v(t)
% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v);
% Specify initial condition
cond = v(0) == 0;
% Solve the ODE
sol = dsolve(ode, cond);
Warning: Unable to find symbolic solution.
% Display the solution
disp('The exact solution is:');
The exact solution is:
disp(sol);
% Optionally, convert the solution to a function for further use
v_exact = matlabFunction(sol)
v_exact = function_handle with value:
@()zeros(0,0)

Vinitha
Vinitha am 5 Okt. 2024

% Clear workspace and command window
clear; clc;
T==2; %Final time

% Define symbolic variables
syms v(t)

% Define the ODE
ode = diff(v, t) == -0.5*v + sec(t) + tan(v) - (exp(-t) + v + int(v^2, t, 0, t));

% Specify the boundary condition
cond = v(0) == 0;
cond = v(T) == 1;

% Solve the ODE
sol = dsolve(ode, cond);

% Display the exact solution
disp('The exact solution is:');
disp(sol);

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by