Changing boundary conditions for ODE

5 Ansichten (letzte 30 Tage)
Borjan Trajanoski
Borjan Trajanoski am 9 Mai 2020
Kommentiert: Ameer Hamza am 9 Mai 2020
My code below plots the solution of the equation of Mathieu with the initial condition: y(0) = 1, y'(0) = 1
Now I still want the same solution to this problem, but with new boundary conditions: y(1) = -1, y(10) = 1
I tried solving it with dsolve(eq, y(1) == -1, y(10) == 1) but then I couldn't implement it into my function.
syms t y(t)
syms a q
tm = [0 75]; %time intervall
figure(1)
clf
hold on
y0=[-1;1]; %initial conditions
[t,y1] = ode23(@Mathieu, tm, y0);
plot(t,y1(:,2))%y(t)
xlim([0 75])
function dydt = Mathieu(t,y)
a = 2;
q = 0.5;
dydt = [y(2); -(a-2*q*cos(2*t))*y(1)];
end
  5 Kommentare
Borjan Trajanoski
Borjan Trajanoski am 9 Mai 2020
I just did it with bvp4c, really cool function! And thanks for the additional code :)
Ameer Hamza
Ameer Hamza am 9 Mai 2020
I am glad to be of help.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Ameer Hamza
Ameer Hamza am 9 Mai 2020
Try this code with bvp4c in the limits [1 10], with the boundary condition given in the question. For more details, see the documentation of bvp4c
tm = [1 10]; %time intervall
t = linspace(tm(1), tm(2), 50);
guess = bvpinit(t, [1; 1]);
sol = bvp4c(@Mathieu, @bcFun, guess);
plot(sol.x, sol.y(1,:)) % y(t) is the row of solution
xlim(tm)
function dydt = Mathieu(t,y) %ODE
a = 2;
q = 0.5;
dydt = [y(2); -(a-2*q*cos(2*t))*y(1)];
end
function res = bcFun(ya, yb) % boundary function
res = [ya(1)+1; % y(1)=-1
yb(1)-1]; % y(10) = 1
end

Weitere Antworten (1)

Nagaraja Shamsundar
Nagaraja Shamsundar am 9 Mai 2020
Your goal is to solve a boundary value problem (BVP). Some BVPs can be converted into equivalent initial value problems (IVP), but in general it is more appropriate to use a BVP solver such as Matlab's BVP4C instead of an IVP solver such as ODE23.
In Matlab, type help bvp4c or doc bvp4c.
  1 Kommentar
Borjan Trajanoski
Borjan Trajanoski am 9 Mai 2020
Thank you! I didn't know there is an extra function for this kind of problem. I am looking it up right now.

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by