Changing boundary conditions for ODE
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Borjan Trajanoski
am 9 Mai 2020
Kommentiert: Ameer Hamza
am 9 Mai 2020
My code below plots the solution of the equation of Mathieu with the initial condition: y(0) = 1, y'(0) = 1
Now I still want the same solution to this problem, but with new boundary conditions: y(1) = -1, y(10) = 1
I tried solving it with dsolve(eq, y(1) == -1, y(10) == 1) but then I couldn't implement it into my function.
syms t y(t)
syms a q
tm = [0 75]; %time intervall
figure(1)
clf
hold on
y0=[-1;1]; %initial conditions
[t,y1] = ode23(@Mathieu, tm, y0);
plot(t,y1(:,2))%y(t)
xlim([0 75])
function dydt = Mathieu(t,y)
a = 2;
q = 0.5;
dydt = [y(2); -(a-2*q*cos(2*t))*y(1)];
end

5 Kommentare
Akzeptierte Antwort
Ameer Hamza
am 9 Mai 2020
Try this code with bvp4c in the limits [1 10], with the boundary condition given in the question. For more details, see the documentation of bvp4c
tm = [1 10]; %time intervall
t = linspace(tm(1), tm(2), 50);
guess = bvpinit(t, [1; 1]);
sol = bvp4c(@Mathieu, @bcFun, guess);
plot(sol.x, sol.y(1,:)) % y(t) is the row of solution
xlim(tm)
function dydt = Mathieu(t,y) %ODE
a = 2;
q = 0.5;
dydt = [y(2); -(a-2*q*cos(2*t))*y(1)];
end
function res = bcFun(ya, yb) % boundary function
res = [ya(1)+1; % y(1)=-1
yb(1)-1]; % y(10) = 1
end

0 Kommentare
Weitere Antworten (1)
Nagaraja Shamsundar
am 9 Mai 2020
Your goal is to solve a boundary value problem (BVP). Some BVPs can be converted into equivalent initial value problems (IVP), but in general it is more appropriate to use a BVP solver such as Matlab's BVP4C instead of an IVP solver such as ODE23.
In Matlab, type help bvp4c or doc bvp4c.
Siehe auch
Kategorien
Mehr zu Boundary Value Problems finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!