Shallow Water wave phase speed.
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
- I am working on a school assignment for a Tides and Water levels class and there is a question that says to make plots of the following:
- Shallow water wave phase speed (m/s) for water depths from 1 m to 4000 m. Label the axes.
- Minimum wavelength to be considered as shallow water waves for the same depth range ( 1 to 4000 meters).
- I believe I have the first part figured out but am unsure on the second. This is what I have so far:
clear;
clf;
clc;
% Constants
g = 9.81; % gravitational acceleration in m/s^2
d =1:4000 ; % water depth in meters
% Shallow water wave phase speed
c = sqrt(g*d)
%%
plot (c,d);
grid on
ylim([1, 4000]);
xlim([0,200]);
xlabel ('m/s^2')
ylabel('Depth')
title('Shallow Water Wave Phase Speed')
%%
L = g*T^2/2/pi %deep water
L = T*sqrt(gd)%shallow water
2 Kommentare
Antworten (1)
Gabriel Ruiz-Martinez
am 10 Sep. 2021
@Jeremiah Thomas, a solution could be this:
% Wave period (s)
T = 2:15;
% Water depths vector (m)
d = 1:4000;
% Gravitational acceleration constant (ms^-2)
g = 9.81;
% Shallow water wave phase speed $ c = sqrt{gh} $
% (ms^-1)
c = sqrt(g.*d);
% Plotting
figure;
plot(d,c,'Color','red');
ax = gca;
ax.XLim = [1 4000];
ax.YLim = [0 200];
ax.XLabel.String = 'Water depth (m)';
ax.YLabel.String = 'Wave speed (ms^-1)';
% Solving dispersion equation, using Lo aproximation **********
for i = 1 : length(T)
for j = 1 : length(d)
Lo = (g*T(i)^2)/(2*pi);
L(j) = Lo*(tanh(((2*pi)*((sqrt(d(j)/g))/T(i)))^(3/2)))^(2/3);
end
end
ld = d./L;
ldq = find(ld <= 0.04);
fprintf('Minimum wavelength to be considered as shallow waters: %5.3f m \r\n',min(L(ldq)));
I hope this script can be useful!.
Regards.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Oceanography and Hydrology finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!