SOLVING nonlinear reaction diffusion heat equation
21 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Please matlab gurus, I need to solve this pde
How to i expreess this on matlab
ut = uxx + u - eu^2;
0 < x < 1; t > 0; e<<1
u(0,t) =0
u(1,t) =0
u(x,0) =x-x^3
where e is epislon.
e =.01
N = 16 and report the value of u(1=2; 1).
Provide a mesh plot of your numerical solution for
t [0; 1] and x = 0 : :01 : 1.
0 Kommentare
Antworten (1)
Biswajit
am 21 Nov. 2023
% Given parameters and conditions
e = 0.01; % epsilon
N = 16; % Number of spatial grid points
T = 1; % Total time
dx = 1 / N; % Grid spacing in x
dt = 0.001; % Time step size
x = 0:dx:1; % Spatial grid
t = 0:dt:T; % Time grid
% Initial condition
u0 = x - x.^3;
% Initialize the solution matrix
u = zeros(length(x), length(t));
u(:,1) = u0';
% Implement finite difference method
for n = 1:length(t)-1
for i = 2:length(x)-1
u(i,n+1) = u(i,n) + dt * (u(i+1,n) - 2*u(i,n) + u(i-1,n))/(dx^2) ...
+ dt * (u(i,n) - e*u(i,n)^2);
end
% Boundary conditions
u(1,n+1) = 0;
u(end,n+1) = 0;
end
% Calculate u(1/2, 1)
x_index = find(abs(x - 1/2) < eps);
u_12_1 = u(x_index, end);
disp(['Value of u(1/2, 1): ', num2str(u_12_1)]);
% Mesh plot of numerical solution
[X, T] = meshgrid(x, t);
figure;
mesh(X, T, u');
xlabel('x');
ylabel('t');
zlabel('u(x,t)');
title('Numerical Solution: u(x,t)');
1 Kommentar
Siehe auch
Kategorien
Mehr zu Visualization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!