
How do I find curve of best fit or create one manually to fit?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ash Maxwell
am 28 Apr. 2020
Bearbeitet: Ameer Hamza
am 28 Apr. 2020
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
scatter(angle, P, 'bx');
%Also I apparently don't have the cftool so I can't use that I'm afraid.
0 Kommentare
Akzeptierte Antwort
Ameer Hamza
am 28 Apr. 2020
Bearbeitet: Ameer Hamza
am 28 Apr. 2020
It looks like a parabols. If you have optimization toolbox, you can use lsqcurvefit to fit this equation (y=a*x^2+b*x+c) to the dataset.
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
fun = @(a,b,c,angles) a*angles.^2 + b.*angles + c;
param_sol = lsqcurvefit(@(param, angles) fun(param(1),param(2),param(3),angles), rand(1,3), angle, P);
a_sol = param_sol(1);
b_sol = param_sol(2);
c_sol = param_sol(3);
plot(angle, P, 'bx', angle, fun(a_sol, b_sol, c_sol, angle), 'r-');

You can also do it without any toolbox. Following also fit a parabolic equation of form (y=a*x^2+b*x+c)
angle = [45,50,55,60,65,70,75,80,85]';
P = [55.51, 69.5, 78.07, 82.06, 81.81, 77.3, 68.12, 53.42, 31.59]';
X = [angle(:).^2 angle(:) ones(size(angle(:)))];
params = X\P(:);
P_estimated = X*params;
plot(angle, P, 'bx', angle, P_estimated, 'r-')
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!