
Fitting data to custom integral function
    10 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
    Carlo Vinchi
 am 27 Apr. 2020
  
    
    
    
    
    Kommentiert: Johnathan
 am 23 Aug. 2024
            Hi everyone,
I struggle with fitting my measured data to an integral function. I already tried this with the curve fitting toolbox and "lsqnonlin" from the Optimization Toolbox. 
Let's say I have the following data set: 
x = [228.1194  179.7485  149.5914  121.6736   91.7255   60.6427   40.8913   23.9615   14.4217   11.9658    9.7682    7.4930    5.4940    3.8771 2.6096];
y = [0.7440    0.7349    0.7276    0.7049    0.6939    0.6607    0.6417    0.6069    0.5868    0.5818    0.5781    0.5748    0.5704    0.5606 0.5611];
I want to fit the the following equation to the data set:
y =  
 
 
 where a,b,c,d are the coeffients to fit. i think my problem is the integration part of the fitting function
I tried different approaches. 
1) With Curve Fitting Toolbox
%% data set
x = [228.1194  179.7485  149.5914  121.6736   91.7255   60.6427   40.8913   23.9615   14.4217   11.9658    9.7682    7.4930    5.4940    3.8771 2.6096];
y = [0.7440    0.7349    0.7276    0.7049    0.6939    0.6607    0.6417    0.6069    0.5868    0.5818    0.5781    0.5748    0.5704    0.5606 0.5611];
plot(x,y,'x'); 
fun= @(a,b,c,d,x) 1/2/x*(integral(b * (log(1 + a/b * (exp(x/c) - 1))) *exp(-x/d) * (1/(x/c)), 0, 2*x));
g = fittype('(1/2/x*integral(b * (log(1 + a/b * (exp(x/c) - 1))) *exp(-x/d) * (1/(x/c)), 0, 2*x))',...
            'dependent', {'y'},'independent', {'x'}, 'coefficients', {'a','b','c','d'});     
[fitobject,gof] = fit(x, y, g);
Thats the error message: 
Error using fittype/testCustomModelEvaluation (line 12)
Expression (integral(b * (log(1 + a/b * (exp(x/c) - 1))) *exp(-x/d) * (1/(x/c)), 0, 2*x)) is not a valid MATLAB expression, has non-scalar
coefficients, or cannot be evaluated:
Error in fittype expression ==> (integral(b .* (log(1 + a./b .* (exp(x./c) - 1))) .*exp(-x./d) .* (1./(x./c)), 0, 2.*x))
??? First input argument must be a function handle.
[...]
2) "lsqnonlin"-approach
xdata = [228.1194  179.7485  149.5914  121.6736   91.7255   60.6427   40.8913   23.9615   14.4217   11.9658    9.7682    7.4930    5.4940    3.8771 2.6096];
ydata = [0.7440    0.7349    0.7276    0.7049    0.6939    0.6607    0.6417    0.6069    0.5868    0.5818    0.5781    0.5748    0.5704    0.5606 0.5611];
plot(xdata,ydata,'x'); 
fun= @(x,xdata) 1/2/xdata*(integral(x(2) * (log(1 + x(1)/x(2) * (exp(xdata/x(3)) - 1))) *exp(-xdata/x(4)) * (1/(xdata/x(3))), 0, 2*xdata)) - ydata;
x0 = [0.65, 0.8, 8, 100000];
x = lsqnonlin(fun, x0);
Error message:
Not enough input arguments.
Error in try2>@(x,xdata)1/2/xdata*(integral(x(2)*(log(1+x(1)/x(2)*(exp(xdata/x(3))-1)))*exp(-xdata/x(4))*(1/(xdata/x(3))),0,2*xdata))-ydata
Error in lsqnonlin (line 196)
            initVals.F = feval(funfcn{3},xCurrent,varargin{:});
Error in try2 (line 18)
x = lsqnonlin(fun, x0);
Caused by:
    Failure in initial objective function evaluation. LSQNONLIN cannot continue.
Another way I tried first was this, where I solve the problem with a loop and simply guess the parameters: 
xdata = [228.1194  179.7485  149.5914  121.6736   91.7255   60.6427   40.8913   23.9615   14.4217   11.9658    9.7682    7.4930    5.4940    3.8771 2.6096];
ydata = [0.7440    0.7349    0.7276    0.7049    0.6939    0.6607    0.6417    0.6069    0.5868    0.5818    0.5781    0.5748    0.5704    0.5606 0.5611];
plot(xdata,ydata,'x'); 
hold on
x = [0.558, 0.78, 25, 100000];
fun = @(xdata) (x(2) .* (log(1 + x(1)./x(2) .* (exp(xdata./x(3)) - 1))) .* exp(-xdata./x(4)) .* (1./(xdata./x(3))));
for i=1:length(xdata)
    y_fit(i) = integral(fun, 0, 2*xdata(i));   
    y_fit2(i) = 1/(2*xdata(i)) *y_fit(i);         
end
plot(xdata,y_fit2,'o');
I found some similar questions in the forum but I wasn't able to adapt these to my case. I'm very thankful for any tip / hint.
Thanks in advance
0 Kommentare
Akzeptierte Antwort
  Ameer Hamza
      
      
 am 27 Apr. 2020
        Try the following code. Compare the equations with your code to see the differences. Also, the reason for using arrayfun() is a bit intricate, and I am feeling a bit lazy to write a long explanation :P, so I leave it to you to read the documentation and closely study this code to find out why everything is being done like this. If you have any confusion, then you can ask in the comment.
xdata = [228.1194  179.7485  149.5914  121.6736   91.7255   60.6427   40.8913   23.9615   14.4217   11.9658    9.7682    7.4930    5.4940    3.8771 2.6096];
ydata = [0.7440    0.7349    0.7276    0.7049    0.6939    0.6607    0.6417    0.6069    0.5868    0.5818    0.5781    0.5748    0.5704    0.5606 0.5611];
integral_term = @(a,b,c,d,X) integral(@(x) b.*(log(1 + a./b.*(exp(x./c)-1))).*exp(-x/d).*(1./(x/c)), 0, 2*X);
fun = @(x,xdata) 1/(2*xdata)*integral_term(x(1),x(2),x(3),x(4), xdata);
fun2 = @(x,Xdata) arrayfun(@(xdata) fun(x,xdata), Xdata);
x0 = [0.65, 0.8, 8, 100000];
x = lsqcurvefit(fun2, x0, xdata.', ydata.');
plot(xdata, ydata, '+', xdata, fun2(x, xdata), '-');

4 Kommentare
  Alex Sha
      
 am 28 Apr. 2020
				Yes, by using 1stOpt, initial guess is not needed, all were done by softweare itself.
  Van Trung Tin HUYNH
 am 4 Sep. 2022
				Thank you for your suggestion. This code works for my problem with Gaussian cumulative distribution function.
Weitere Antworten (1)
  Carlo Vinchi
 am 2 Mai 2020
        
      Bearbeitet: Carlo Vinchi
 am 2 Mai 2020
  
      3 Kommentare
  Chandra Mouli
 am 30 Apr. 2021
				Hi Ameer bro, i am really in chaos in fitting a customized integral based equation. 
The main aim is to find the best values of the unknown coefficients in the equation by using the  given data and the equation. 

In the above equation we have T vs M(T) data set, we should find the best value for Tc and other remaining coefficients by fitting the above equation.
Can u please help me solve this ameer bro ?
thanks,
chandra.
  Johnathan
 am 23 Aug. 2024
				@Chandra Mouli Hello, did you end up solving your issue?
I have this equation I need to fit:

where x is:

Omega is the independent variable in the integral (omega is solved for) while T is the range 1 to 100 in 1K steps. Or T can simply be my experimental Temperature data.
Siehe auch
Kategorien
				Mehr zu Calculus finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!






