odeEueler Explicit Eurlers method
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Yo mama
am 26 Apr. 2020
Bearbeitet: Yo mama
am 28 Apr. 2020
Ok so I am working on a project and I will put the image of the problem statement and there must be somthing fundemental that I am doing incorrectly because I feel like this methodology is right for the problem
Here is my host file
%% Definining Initial Parameters for the Eueler
%yINI = [0;0]; %This describes the IC for the displacement and velocity
%h = [0.8 0.5 0.1]; %Given step sizes we will use in plots
%te = [0 8]; % ' Time Elapsed' from 0s-->8s our x-axis
function [t,y,ydot] = odeEULER(ODE1,ODE1,a,b,h,yINI)
%a - initial value for t
%b - last value of t
%h - step size
%yINI - y and y dot initial values
%Output variables- t,y,ydot
t(1) = 0; y(1) = yINI; ydot = yINI;
N= (b-a)/h;
for i=1:N
t(i+1)=t(i) + h;
y(i+1)=y(i) + ODE1(t(i),y(i))*h;
ydot(i+1)=ydot(i) + ODE2(t(i),ydot(i))*h;
end
and now here is my scrpit file:
clc; clear all
a=0;b=8;h = [0.8 0.5 0.1];yINI = [0;0];
[t,y,ydot] = odeEULER(@dydt,@dydotdt,a,b,h,yINI)
figure(1)
plot(t,y,'LineWidth',2)
xlabel('Time(s)')
ylabel('Distance travelled(m)')
title('Displacement over time')
grid on
figure(2)
plot(t,ydot,'LineWidth',2)
xlabel('Time(s)')
ylabel('Velocity (m/s)')
title('Velocity vs Time')
grid on
function dydx=dydt(t,y,ydot)
dydx=ydot;
end
function dydx=dydotdt(t,y,ydot)
g=32.2,w= 3000-800*t;T = 8000;D =((0.005*g)*(ydot^2));
dydx=((g/w)*(T-w-D));
end
Please let me know what I am to
0 Kommentare
Akzeptierte Antwort
Thiago Henrique Gomes Lobato
am 26 Apr. 2020
You had many syntax errors on your code. Here is a version with them fixed and it should work. Although a negative weighting is not something that makes sense to me (it happens for t>3.75 s following your command).
clc; clear all
a=0;b=8;h = [0.8 0.5 0.1];yINI = [0;0];
for idxH=1:3
[t,y,ydot] = odeEULER(@dydt,@dydotdt,a,b,h(idxH),yINI);
figure
plot(t,y,'LineWidth',2)
xlabel('Time(s)')
ylabel('Distance travelled(m)')
title(['Displacement over time. h = ',num2str(h(idxH))])
grid on
figure
plot(t,ydot,'LineWidth',2)
xlabel('Time(s)')
ylabel('Velocity (m/s)')
title(['Velocity vs Time. h = ',num2str(h(idxH))])
grid on
end
function dydx=dydt(ydot)
dydx=ydot;
end
function dydx=dydotdt(t,ydot)
g=32.2;
w= 3000-800*t;T = 8000;D =((0.005*g)*(ydot^2));
dydx=((g/w)*(T-w-D));
end
function [t,y,ydot] = odeEULER(ODE1,ODE2,a,b,h,yINI)
%a - initial value for t
%b - last value of t
%h - step size
%yINI - y and y dot initial values
%Output variables- t,y,ydot
N= (b-a)/h;
y = zeros(N,1);
ydot = zeros(N,1);
t = zeros(N,1);
t(1) = 0; y(1) = yINI(1); ydot(1) = yINI(2);
for i=1:N-1
t(i+1)=t(i) + h;
y(i+1)=y(i) + ODE1(ydot(i))*h;
ydot(i+1)=ydot(i) + ODE2(t(i),ydot(i))*h;
end
end
1 Kommentar
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!