I am using machine learning classfier to predict my test accuracy. The classfier uses hold out to take data in random. How to I get the train accuracy using the code?

2 Ansichten (letzte 30 Tage)
%% -------------- Building Classifier ----------------------------
classification_model=fitcnb(data,'class_labels~PC1+PC2');
%% -------------- Test and Train sets ----------------------------
cv=cvpartition(classification_model.NumObservations,'HoldOut', 0.3);
cross_validated_model=crossval(classification_model,'cvpartition',cv);
%% -------------- Making Predictions for Test sets ---------------
predictions=predict(cross_validated_model.Trained{1},data(test(cv),1:end-1));
%% -------------- Analyzing the predictions ---------------------
results=confusionmat(cross_validated_model.Y(test(cv)),predictions)

Antworten (1)

Omega
Omega am 5 Dez. 2024
Hi Atik,
To obtain the training accuracy, first, you need to extract the training data indices using the "training(cv)" MATLAB function and make predictions on it. Once you have the "trainPredictions," you can calculate the training accuracy by comparing it with the actual "trainLabels."
If you have further questions, please feel free to reach out to me by adding a comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by