Fitting data to an equation with complex part
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Baris Gungordu
am 9 Apr. 2020
Kommentiert: Alex Sha
am 17 Apr. 2020
Hi,
I hope you are all well.
I have experimental data for a diaphragm displacement and want to fit it to the following equation. The experimental data is displacement (H in meters) and frequency (w in rad/s).
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/283090/image.png)
I have a working code but it is changes a lot with the initial guess. I need help to improve this.
x(1) is the alpha (numerator) and x(2) is the damping. omega_r is the resonant frequency and it is known. Gamma should be between 0.04 and 0.07. I am interested in gamma, the damping term in the denominator.
% non linear fitting
fun = @(x,omega)(x(1)./(omega_r^2 - omega.^2 + 1i*(2*x(2)*omega_r.*omega)));
x0 = [-35.9811 + 1i*23.8154,0.06];
opts = optimoptions(@lsqcurvefit,'Display','off','Algorithm','trust-region-reflective');
[vestimated,resnorm] = lsqcurvefit(fun,x0,omega,H,[],[],opts);
Looking forward to your suggestions.
Best regards,
Baris
Edit: x0 is changed.
13 Kommentare
Akzeptierte Antwort
Alex Sha
am 11 Apr. 2020
lsqcurvefit is seneitive to initial start-values since it use local optimization algorithm, same as cftool, there is a GA toolbox with global optimization algorithm in Matlab, unfortunately, the effects of GA are not so good as expected.
2 Kommentare
J. Alex Lee
am 13 Apr. 2020
I don't know that it's helpful to try to characterize the methods' sensitivities...it's really sensitivity, i.e., the nature of the optimization problem that is important. If your optimization landscape is bumpy, as Alex Sha says, methods like Levenberg and trust-region may only find local bumps, depending on how much control you have over the size of the search space. On the other hand, if you have a very smooth optimization landscape, you might be fine. On the other hand, if your optimization landscape is smooth but flat, most algorithms will have trouble because no set of parameters will look any better than the next.
This is why I recommended characterizing your specific problem to the extent possible by studying norm(res) (and its gradient) as a function of your fit parameters.
It looks like you have a 4 parameter fit (2 real parts and 2 complex parts). But depending on how the model works (since you only care about real part of H), it's possible that you're over-specifying, in which case your sensitivity might have to do with multiple combinations of your 4 parameters result in the same real part of the model.
Weitere Antworten (1)
Baris Gungordu
am 17 Apr. 2020
1 Kommentar
Alex Sha
am 17 Apr. 2020
Hi, if all are as previous except the data, then the result will be:
Root of Mean Square Error (RMSE): 0.478025304038979
Sum of Squared Residual: 133.220275528809
Correlation Coef. (R): 0.994221627528188
R-Square: 0.9884766446448
Parameter Best Estimate
-------------------- -------------
x1.realpart 828282884.340485
x1.imagpart -136314338.186314
x2.realpart 0.681537210289169
x2.imagpart 9.3260946979766
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/285342/image.jpeg)
Siehe auch
Kategorien
Mehr zu Get Started with Curve Fitting Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!