Solving non linear 2nd order differential equation
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Reuben Salisbury
am 7 Apr. 2020
Kommentiert: Reuben Salisbury
am 7 Apr. 2020
I am trying to solve the differential equation:
mx''+cx'+kx=ky+cy''
y is the input and x is the output.
y=Y0sin(wt)
where m=100, c=1300, k= 17000, Y0=input value, w=input value
initially I need to solve this, and then i need to plot displacement and velocity profiles.
clear
t=0:0.1:15; %time peroid
Y0= input('wave amplitude ') ; %Wave amplitude
l= input('length of wave ') ; %length of the wave
u=input('speed of boat'); %Boat Velocity
w=u/l; %frequency of wave
y=Y0*sin(w*t); %wave height model
Dr=0.5; %Required Damping Ratio
k=17000; %Spring Constant of suspension
m=100;
wn=(k/m)^0.5; %Natural Frequency
wd=wn*(1-Dr^2)^0.5; %Damped Natural Frequency
c=2*Dr*(k*m)^(0.5); %Damping coefficient
syms x(t)
ode=m*diff(x,t,2)+c*diff(x,t)+k*x==y+(2*Dr/wn)*diff(y,t);
xSol(t)=dsolve(ode);
0 Kommentare
Akzeptierte Antwort
Birdman
am 7 Apr. 2020
Try this:
clear
syms t
Y0= input('wave amplitude ') ; %Wave amplitude
l= input('length of wave ') ; %length of the wave
u=input('speed of boat'); %Boat Velocity
w=u/l; %frequency of wave
y=Y0*sin(w*t); %wave height model
Dr=0.5; %Required Damping Ratio
k=17000; %Spring Constant of suspension
m=100;
wn=(k/m)^0.5; %Natural Frequency
wd=wn*(1-Dr^2)^0.5; %Damped Natural Frequency
c=2*Dr*(k*m)^(0.5); %Damping coefficient
syms x(t)
Dx(t)=diff(x,t);
ode=m*diff(x,t,2)+c*diff(x,t)+k*x==y+(2*Dr/wn)*diff(y,t);
xSol(t)=dsolve(ode,[x(0)==0 Dx(0)==0]);%displacement
DxSol(t)=diff(xSol,t);%velocity
t=0:0.05:15;
plot(t,xSol(t),t,DxSol(t))
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!