How to use softmax, Loss function(negative log probability) in classification

4 Ansichten (letzte 30 Tage)
Hello.
I want to classify videos.
After computation of eucldean distance, I want to use softmax and Loss function(negative log probability) for classification.
Can I get some idea to make the code?
clear all
close all
data = csvread('outfile.csv');
values = data(:,1:end-1);
labels = data(:,end);
avg = splitapply(@(x) mean(x,1), values, labels+1);
mean_class1 = avg(1,:);
mean_class2 = avg(2,:);
mean_class3 = avg(3,:);
mean_class4 = avg(4,:);
mean_class5 = avg(5,:);
bend_query = values(1,:);
run_query = values(2,:);
walk_query = values(3,:);
skip_query = values(4,:);
wave_query = values(5,:);
% calculate euclidean distance
euclidean_bend = pdist2(mean_class1, bend_query, 'euclidean');
euclidean_run = pdist2(mean_class2, run_query, 'euclidean');
euclidean_walk = pdist2(mean_class3, walk_query, 'euclidean');
euclidean_skip = pdist2(mean_class4, skip_query, 'euclidean');
euclidean_wave = pdist2(mean_class5, wave_query, 'euclidean');

Akzeptierte Antwort

Shishir Singhal
Shishir Singhal am 7 Apr. 2020
For classification,
softmax creates probability scores for each category.
since your predictions and targets follows different probability distributions. You can use cross entropy loss for that. It is kind of negative log probability function.
Refer to this documentation for the implementation: https://www.mathworks.com/help/deeplearning/ref/dlarray.crossentropy.html

Weitere Antworten (0)

Kategorien

Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by