passing variable through pattern search iterations
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Andrea Agosti
am 30 Mär. 2020
Bearbeitet: Venus liria silva mendes
am 5 Mai 2021
Hi everyone!
I'm using pattern search to solve a minmax problem. I know that pattern search:
1) Starts witha a polling phase where it polls the points in the current mesh by computing their objective function values,
2) it groups all the values of the objective functions and it select the mesh case with highest objective function value,
3) it moves the mesh in the last successful poll point (or it leaves the central mesh point as before) and starts again from 1),
4) this continues untill convergence is reached (possibly).
My question is: Is it possible to pass a variable from the best objective function (point 2) to the next polling phase (point 3)?
Many thanks!
3 Kommentare
Venus liria silva mendes
am 4 Mai 2021
Bearbeitet: Venus liria silva mendes
am 5 Mai 2021
Hi everyone
%% Modify options setting
my example problem:
[combination, custototal, exitFlag, Output, population, scores] = ga (@ smc09v7AG_01, n_vars, A, b, Aeq, beq, LB, UB, NON_linear, Integral_variables, settings)
'' population '' I'm not sure if all individuals from all generations or just the last one return. And the "scores" returns the evaluations of each one.
Hope it works!
https://www.mathworks.com/help/gads/genetic-algorithm-options.html
Akzeptierte Antwort
Ameer Hamza
am 31 Mär. 2020
Following code shows how to get the information from each iteration of patternsearch
global x_iterations y_iterations
x_iterations = [];
y_iterations = [];
obj_fun = @(x) sum(x.^2.*exp(x.^2).*abs(log(x+1)));
opts = optimoptions('patternsearch', 'OutputFcn', @myOutFcn);
[x_final, f_final] = patternsearch(obj_fun, rand(1,10), [], [], [], [], [], [], [], opts);
function [stop, options, optchanged] = myOutFcn(optimvalues, options, flag)
global x_iterations y_iterations
x_iterations = [x_iterations; optimvalues.x];
y_iterations = [y_iterations; optimvalues.fval];
stop = false;
optchanged = false;
end
This page show how to define the outputFcn to get more detail for each iteration of the optimization algorithm: https://www.mathworks.com/help/gads/pattern-search-options.html#f14623
4 Kommentare
Zakaria
am 6 Apr. 2020
Does this methodology work with Genetic Algorithm optimizioation ?
I noticed that the structure of the OutputFcn is not the same.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Direct Search finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!