lsqnonlin and stretched exponential function

15 Ansichten (letzte 30 Tage)
Alessandro
Alessandro am 29 Mär. 2020
Kommentiert: Torsten am 29 Mär. 2020
Hi all,
I am currrently trying to fit my data with lsqnonlin instead lsqcurvefit for a comparative reason and I am facing some troubles.
Starting with the easiest example in https://se.mathworks.com/help/optim/ug/lsqnonlin.html, I modify the function as:
fun = @(r) r(1).*exp(-d.*r(2)).^r(3)-y
This function yields x = [1.0376 3.1962 0.4104].
From here, I calculate my errors in the way:
[x,resnorm,residual,exitflag,output,lambda,J] = lsqnonlin(fun,x0);
N = length(y(:,1));
[Q,R] = qr(J,0);
mse = sum(abs(residual).^2)/(size(J,1)-size(J,2));
Rinv = inv(R);
Sigma_var = Rinv*Rinv'*mse;
x_er = full(sqrt(diag(Sigma_var)));
Here, the values I get are not making any sense to me x_er = [0.02701 6458034.8422 829226.8633]; especially for x(2) and x(3).
Fit and errors are totally fine if I fit similar data in the form: (i) r(1).*exp(-d.*r(2)) or (ii) r(1).*exp(-d.*r(2))+r(3).*exp(-d.*r(4));
Could you please help me? Am I missing something?
Thanks a lot.
Best wishes
Alessandro
  4 Kommentare
Ameer Hamza
Ameer Hamza am 29 Mär. 2020
You code seems to give correct output
Alessandro
Alessandro am 29 Mär. 2020
Yes, indeed but I need the errors as well.
When I insert the exponent in the function, i.e., r(3), something goes extremely wrong.
Any idea?

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Torsten
Torsten am 29 Mär. 2020
Bearbeitet: Torsten am 29 Mär. 2020
error_bounds = nlparci(x,residual,'jacobian',J)
after the call to lsqnonlin.
If you don't have a toolbox with nlparci, search the web for nlparci.m.
  8 Kommentare
Alessandro
Alessandro am 29 Mär. 2020
Thanks. Right but I still don't get why the errors I got are making no sense to me
Torsten
Torsten am 29 Mär. 2020
There is no such thing as confidence intervals for dependent parameters.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Least Squares finden Sie in Help Center und File Exchange

Produkte


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by