Using ode45 to solve odes from a matrix
19 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ashton Linney
am 23 Mär. 2020
Kommentiert: Ashton Linney
am 23 Mär. 2020
This is the code I currently have. It works however I have had to manually input the four odes. (Line 8)
My question is, what code can I use to automate this part by using a matrix and a vector of y(i) variables?
The matrix would be [-f1 f1 0 0; 0 -f2 f2 0; 0 0 -f3 f3; v 0 0 -v]
Thank you!
%=====fx represents transition rate for degredation to next state=====
f1=0.5;
f2=0.5;
f3=0.2;
v=0;
%=====Sets the ordinary differential equations as a vector=====
f = @(t,y)[-f1*y(1)+v*y(4); -f2*y(2)+f1*y(1); -f3*y(3)+f2*y(2); f3*y(3)-v*y(4)];
%=====Sets time period=====
tspan = [0 30];
%=====Sets the initial state conditions as a vector=====
y0 =zeros(4,1);
y0(1) = 1;
%=====Calls the integrator=====
[t, y] = ode45(f,tspan,y0);
%=====Plots the results=====
plot(t,y(:,1),t,y(:,2),t,y(:,3),t,y(:,4))
legend('State 1','State 2','State 3','State 4','Location','best')
title('Probability of being in each state at time t.')
0 Kommentare
Akzeptierte Antwort
James Tursa
am 23 Mär. 2020
Bearbeitet: James Tursa
am 23 Mär. 2020
F = [-f1 f1 0 0; 0 -f2 f2 0; 0 0 -f3 f3; v 0 0 -v].';
f = @(t,y) F * y;
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!